The folder "PrimitiveSD_prime_power" contains ten files named "SymDesv", $v=16,27,64,121,243,256,343,1024,1331$, and 2187. For each v, SymDesv contains the list " $\mathrm{D} v$ " which is a record of all constructed primitive symmetric designs with v points. The point set of all designs is $\{1,2,3, \ldots, v\}$.

The record of a particular design is an element of the list " $\mathrm{D} v$ ", say i -th element $\mathrm{D} v[\mathrm{i}]$. For instance, list "D243" from the file "SymDes243" has two elements: D243[1] and D243[2]. The latter is $(243,121,60)$ Paley design record.

The abbreviation "rec" stands at the beginning of each list element. It separates different designs if the list has more than one element.

The record of a design $\mathrm{D} v[\mathrm{i}]$ has the following two important components:

1. Aut $\mathrm{D} v[\mathrm{i}]$ generators' permutation representation;
2. set B of all blocks of $\mathrm{D} v[\mathrm{i}]$.

Besides, the record gives some other information on the design. Because of the transitivity, any block $\mathrm{B} \in B$ is a base block of $\mathrm{D} v[\mathrm{i}]$ and the other blocks can be obtained by the action of $A u t \mathrm{D} v[\mathrm{i}]$ on B .

The readers not acquainted with GAP can use SymDes v files as text files with information on designs' full automorphism groups permutation representation and basic blocks.

For instance, the first element D243[1] of the list "D243" in the file "SymDes243" contains, among the rest,

1. the full automorphism group of D243[1] given by:
...autGroup $:=\operatorname{Group}([(1,2,3)(4,5,6) \ldots \ldots(106,180,222,206,177)]), \ldots$
2. The list of all blocks of D243[1]:
...blocks :=
[[$1,2,3,4,5,6,7,8,11,21,24,25,27,28,29,31,34,35,36,38,39,40$, $42,45,46,49,50,51,52,53$,
$54,55,57,60,61,68,69,71,80,81,83,84,85,88,91,93,94,95,97,99$, $100,103,104,105,106,112$,
$113,114,115,116,120,121,124,125,129,130,132,133,134,135,136,137$, 138, 140, 141, 144, 147, 148,
$149,151,152,155,157,159,162,165,167,171,173,174,176,177,178,182$, 183, 188, 189, 191, 194, 196,
$198,199,201,202,208,210,213,214,215,218,221,222,223,225,227,232$, 233, 234, 240, 241, 243],...
$\ldots .,[9,10,13,14,16,19,20,21,23,24,25,26,27,28,29,31$,
$34,36,37,38,39,40,41,42,44,47,49,50,51,53,54,55,57,60,67,69,73$, 77, 79, 80, 83, 84, 85,
$86,88,89,91,92,93,95,98,101,104,106,108,110,113,114,115,118,119$, 121, 122, 123, 124, 127,
$128,129,131,132,137,138,140,141,142,145,146,148,153,154,156,157$, $160,161,162,163,165,167$,
$169,171,175,177,178,180,183,184,187,191,196,197,199,203,204,205$, 206, 210, 211, 212, 216, 220,

221, 222, 225, 226, 229, 230, 235, 237, 238, 239, 243]], \ldots

The list of designs is read into GAP using Read("name-file"). Here is a simple analysis in GAP for the example above:
gap> Read("path/SymDes243"); ;
gap $>$ Length(D243);
2
gap> G:=D243[1].autGroup; ;
gap> Size(G);
13365
gap> gen:=GeneratorsOfGroup(G); ;
gap> Length(gen);
3
gap $>$ gen[1];
$(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26$,
$27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49$,
$50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71$,
$72)(73,74,75)(76,77,78)(79,80,81)(82,83,84)(85,86,87)(88,89,90)(91,92,93)(94$, $95,96)(97,98,99)(100,101,102)(103,104,105)(106,107,108)(109,110,111)(112,113$,
$114)(115,116,117)(118,119,120)(121,122,123)(124,125,126)(127,128,129)(130,131$,
$132)(133,134,135)(136,137,138)(139,140,141)(142,143,144)(145,146,147)(148,149$,
$150)(151,152,153)(154,155,156)(157,158,159)(160,161,162)(163,164,165)(166,167$,
$168)(169,170,171)(172,173,174)(175,176,177)(178,179,180)(181,182,183)(184,185$,
$186)(187,188,189)(190,191,192)(193,194,195)(196,197,198)(199,200,201)([. .]$.
gap> blocks:=D243[1].blocks; ;
gap> base:=blocks[1];
$[1,2,3,4,5,6,7,8,11,21,24,25,27,28,29,31,34,35,36,38,39$,
$40,42,45,46,49,50,51,52,53,54,55,57,60,61,68,69,71,80,81$,
$83,84,85,88,91,93,94,95,97,99,100,103,104,105,106,112,113$,
$114,115,116,120,121,124,125,129,130,132,133,134,135,136,137$,
$138,140,141,144,147,148,149,151,152,155,157,159,162,165,167$,
$171,173,174,176,177,178,182,183,188,189,191,194,196,198,199$,
201, 202, 208, 210, 213, 214, 215, 218, 221, 222, 223, 225, 227, 232, 233,
234, 240, 241, 243]
gap $>$ Length(base);
121
$2 * ~$
$* *$
Should our files be used for more detailed analysis, "GRAPE" and "DESIGN" packages have to be installed under GAP. These packages are loaded within GAP by calling the statement:
gap> LoadPackage("grape");
true
gap> LoadPackage("design");
true
For more information the reader is pointed to:
L.H. Soicher, The DESIGN package for GAP, Version 1.3, 2006, http://designtheory.org/software/gap_design/
L.H. Soicher, The GRAPE package for GAP, Version 4.3, 2006, http://www.maths.qmul.ac.uk/~leonard/grape/

