Classical Logic vs. Quantum Logic

Lovre Grisogono

University of Zagreb

Split, July 8-9 2013

When comparing Classical Logic and Quantum Logic, the first step is defining Classical Logic, or asking:

When comparing Classical Logic and Quantum Logic, the first step is defining Classical Logic, or asking:

What does the expression "Classical Logic" make you think of?

Classical Logic Properties:

- Binarity,
- Commutativity,
- Distributivity,
- Principle of excluded middle,
- Principle of non-contradiction.

Classical Logic Properties

- Binarity:
 Set of truth values V(P) ∈ {0,1}
- Commutativity: $P \cap Q \equiv Q \cap P, P \cup Q \equiv Q \cup P$
- Distributivity: $P \cap (Q \cup R) \equiv (P \cap Q) \cup (P \cap R)$ $P \cup (Q \cap R) \equiv (P \cup Q) \cap (P \cup R)$
- Principle of excluded middle: $\mathcal{V}(P \cup \neg P) = 1$
- Principle of non-contradiction: $\mathcal{V}(\neg(P \cap \neg P)) = 1$, alternatively $\mathcal{V}(P \cap \neg P) = 0$

Two main types:

- Birkoff-von Neumann (B-vN) Quantum Logic
- Fuzzy Quantum Logic

Birkhoff-von Neumann (B-vN) Quantum Logic

- In 1936 Birkoff and von Neumann wrote the article "The Logic of Quantum Mechanics".
- Birkoff and von Neumann wanted to find the logical structure in quantum mechanics which did not conform to classical logic.
- B-vN quantum logic is, among other things, a binary, non-distributive and non-commutative lattice.

Fuzzy Quantum Logic

- Jaroslaw Pykacz used the fuzzy sets idea to build Quantum Logic.
- Fuzzy Quantum Logic is, defined by Pykacz, partial and infinite - valued (V(P) ∈ [0, 1]) which is the connection to a probablistic interpretation of quantum mechanics.
- With Fuzzy Quantum Logic we can analyze non tested experimental sentences.
- There are generally two sets of set operations used in Fuzzy Quantum Logic:

Fuzzy Quantum Logic

- Jaroslaw Pykacz used the fuzzy sets idea to build Quantum Logic.
- Fuzzy Quantum Logic is, defined by Pykacz, partial and infinite - valued (V(P) ∈ [0, 1]) which is the connection to a probablistic interpretation of quantum mechanics.
- With Fuzzy Quantum Logic we can analyze non tested experimental sentences.
- There are generally two sets of set operations used in Fuzzy Quantum Logic:
 - Zadeh's set operations
 - Giles' set operations

- Lotfi A. Zadeh developed the fuzzy set theory.
- Zadeh's set operations are standard fuzzy sets operations.

- Lotfi A. Zadeh developed the fuzzy set theory.
- Zadeh's set operations are standard fuzzy sets operations.
- Complement: $\mathcal{V}(P') = 1 \mathcal{V}(P)$
- Intersection: $\mathcal{V}(P \cap Q) = min[\mathcal{V}(P), \mathcal{V}(Q)]$
- Union: $\mathcal{V}(P \cup Q) = max[\mathcal{V}(P), \mathcal{V}(Q)]$

A different definition of set operations was given by Robin Giles.

A different definition of set operations was given by Robin Giles.

- Complement: $\mathcal{V}(P') = 1 \mathcal{V}(P)$
- Intersection: $\mathcal{V}(P \cap Q) = max[\mathcal{V}(P) + \mathcal{V}(Q) 1, 0]$
- Union: $\mathcal{V}(P \cup Q) = min[\mathcal{V}(P) + \mathcal{V}(Q), 1]$

Let's compare different logics considering given properties.

Properties\Logic	CL	B-vN	Z'sFL	Gs'FL
Binarity		\checkmark	×	×
Commutativity	\checkmark	×	\checkmark	\checkmark
Distributivity		×	\checkmark	×
Excluded Middle	\checkmark	\checkmark	×	\checkmark
Non-Contradiction	\checkmark		×	\checkmark

Distributivity or Excluded Middle?

So the question is:

So the question is:

Which one is more important for quantum mechanics: Distributivity or Excluded Middle?