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Preface

This book is based on my lecture notes and supervision (tutorial) notes for the
course entitled “Logic, Computation and Set theory” which is lectured in part
IT (third year) of the Cambridge Mathematics Tripos. The choice of material is
not mine, but is laid down by the Mathematics Faculty Board having regard to
what the students have learned in their first two years. Third-year mathematics
students at Cambridge have learned a great deal of mathematics—Cambridge is
one of the few schools where it is possible for an undergraduate to do nothing but
mathematics for three years—but they have done no logic to speak of. Readers
who know more logic and less mathematics than did the original audience for
this material—and they may well be a majority outside these islands—may find
the emphasis rather odd. The part IIb course (of which this is a component)
is designed for strong mathematics students who wish to go further and who
need some exposure to logic: it was never designed to produce logicians. This
book was written to meet a specific need, and to those who suffer that need I
offer it in the hope that it can be of help. I offer it also in the hope that it
will convey to mathematicians something of the flavour of the distinctive way
logicians do mathematics. However, the feature of this book that is perhaps most
distinctive—the freewheeling approach to induction—goes back to Conway’s
beautiful book (op. cit.).

Like all teachers I owe a debt to my students. Any researcher needs students
for the stimulating questions they ask but in addition those attempting to write
textbooks will be grateful to their students for the way they push us to give
clearer explanations than our unreflecting familiarity with elementary material
normally generates. I particularly want to thank Jonathon Kirby, Rosi Sexton,
Tom Jones and David Chan.

Things in boldface are usually being defined. Things in italic are being
emphasised. Some exercises will be collected at the end of each chapter, but a
lot of exercises are to be found in the body of the text. The intention is that
they will all have been inserted at the precise stage in the exposition when they
become doable.
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Introduction

In the beginning was the Word, and the Word was with God, and
the Word was God. The same was also in the beginning with God.

John’s Gospel, ch 1 v 1

Despite having this text by heart I still have no idea what it means. What
I do know is that the word which is translated from the Greek into English as
‘word’ is Aoyoo which also gave us the word ‘Logic’. It’s entirely appropriate
that we use a Greek word since it was the Greeks who invented Logic. They also
invented the axiomatic method, in which one makes basic assumptions about a
topic from which one then derives conclusions.

Logic exploded into life in the twentieth century with the Hilbert Programme
and the famous Incompleteness theorem of Gdédel. It is probably a gross sim-
plification to connect the explosive growth in Logic in the twentieth century
with the Hilbert programme, but that is the way the story is always told. In
his famous 1900 address Hilbert posed various challenges whose solution would
perforce mean formalising more mathematics. One particularly pertinent exam-
ple concerns Diophantine equations, which are equations like 2% + y°® = 22 +w?
where the variable range over integers. Is there a general method for finding
out when such equations have solutions in the integers? If there is, of course,
one exhibits it and the matter is settled. If there isn’t (and as it happens, there
isn’t) then in order to prove this fact one would have to be able to say something
like: “Let A be an arbitrary algorithm ... ” and then establish that A did not
perform as intended. However, to do that one would need to have a concept of
an algorithm as an arbitrary mathematical object, and this was not available in
1900. Here we treat this topic in chapter 6.

There will be two recurring themes in this book: inductively defined sets,
and completeness theorems. The first is well-demarcated and has a technical
core which merits a chapter to itself, but the second is more amorphous and
deserves to be treated earlier in this introduction.

One of the great insights of twentieth-century logic was that in order to
understand how formule can bear the meanings they bear we must first strip
them of all those meanings so we can see the symbols as themselves. Stripping
symbols of all the meanings we have so lovingly bestowed on them over the
centuries in various unsystematic ways' seems an extremely perverse thing to

IThe reader is encourged to dip into Cajori’s History of mathematical notations to see how
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do—after all it was only so that they could bear meaning that we invented the
things in the first place. But we have to do it so that we can think about formulae
as (perhaps mathematical) objects in their own right, for then can we start to
think about how it is possible to ascribe meanings to them in a systematic way
that takes account of their internal structure. That makes it possible to prove
theorems about what sort of meanings can be borne by languages built out of
those symbols. These theorems tend to be called Completeness theorems, and
it is only a slight exaggeration to say that Logic in the middle of the twentieth
century was dominated by the production of them. It’s hard to say what it’s
dominated by now because no age understands itself (A very twentieth century
insight!) but it doesn’t much matter here because all the material of this book
is fairly old and long-established. All the theorems in this will be older than the
undergraduate reader; most of them are older than the author.

unsystematic these ways can be, and how many dead ends there have been.



Chapter 1

Definitions and Notations

This chapter is designed to be read in sequence, not merely referred back to.
There are even exercises in it to encourage the reader.

I shall use lambda notation for functions. Az.F(x) is the function which,
when given z, returns F(z). Thus Az.z? applied to 2 evaluates to 4. A word
is in order at this point on the kind of horror inspired in logicians by passages
like this one, picked almost at random from the literature (Ahlfors, Complex
Analysis p 69)

Suppose that an arc with equation z = z(t),a < t < 8 is contained
in a region (2, and let f be defined and continuous in . Then
w = w(t) = f(z(t)) defines an arc ...

The linguistic conventions being exploited here can be easily followed by
people brought up in them, but they defy explanation in any terms that would
make this syntax machine-readable. Lambda notation is more logical. Writing
“w = At.f(z(t))” would have been much better practice. I shall also adhere to
the universal practice of writing ‘Azy.(...)" for ‘Az.(Ay.(...))".

I write ordered pairs, triples, etc. with angle brackets: (x,y). If z is an
ordered pair then fst(z) and snd(z) are the first and second components of x.

b

We will also write ‘@ for ‘xy...x, .

Structures

A set with a relation (or bundle of relations) associated with it is called a
structure and we use angle brackets for this too. (X, R) is the set X associated
with the relation R, and (X, Ry, R>...R,) is X associated with the bundle of
relations—R; ... R,. For example (IN, <) is the naturals as an ordered set.
The elements are “in” the structure in the sense that they are members of
the underlying set—which the predicates are not. Often we will use the same
letter in different fonts to denote the structure and the domain of the structure,
thus: in “M = (M,...)” M is the domain of 9. Some writers prefer the longer
but more evocative locution that M is the carrier set of 9. We may as well

9



10 CHAPTER 1. DEFINITIONS AND NOTATIONS

note here the notation ‘dom(R)’ (the domain of an n-ary relation R) which is
the set of things that appear as elements of n-tuples in R.

Notice that it is common and natural to have distinct structures with the
same carrier set. The rationals-as-an-ordered-set, the rationals-as-a-field and the
rationals-as-an-ordered-field are three distinct structures with the same carrier
set. Even if you are happy with the idea of this distinction between carrier-set
and structure and will not need for the moment the model-theoretic jargon I am
about to introduce in the rest of this paragraph, you may find that it helps to
settle your thoughts. The rationals-as-an-ordered-set and the rationals-as-an-
ordered-field have the same carrier set, but different signatures (see page 41). We
say that the rationals-as-an-ordered-field are an expansion of the rationals-as-
an-ordered-set, which in turn is a reduction of the rationals-as-an-ordered-field.
The reals-as-an-ordered-set are an extension of the rationals-as-an-ordered-set,
and conversely the rationals-as-an-ordered-set are a substructure of the reals.
Thus:

Beef up the signature to get an expansion

Beef up the carrier set to get an extension

Throw away some structure to get a reduction

Throw away some of the carrier set to get a substructure

We will need the notion of an isomorphism between two structures. If
(X, R) and (Y, S) are two structures they are isomorphic iff there is a bijection
f between X and Y such that for all z,y € X, R(z,y) iff S(f(z)), (f(y)).

(This dual use of angle brackets for tupling and for notating structures
has just provided us with our first example of overloading. “Overloading”!?
It’s computer science-speak for “using one piece of syntax for two distinct
purposes”—commonly and gleefully called “abuse of notation” by mathemati-
cians.)

Intension and extension

Sadly the word ‘extension’, too, will be overloaded. We will not only have exten-
sions of models—as just now—but extensions of theories (of which more later),
and there is even extensionality, a property of relations. A binary relation R
is extensional if (Vz)(Vy)(z = y +— (V2)(R(z, z) +— R(y,z)). Notice that a
relation can be extensional without its converse (see below) being extensional:
think “square roots”. Extensional relations correspond to an injection from a
set X — P(X).

Finally there is the intension-extension distinction, an informal device, but
a standard one we will need at several places. We speak of functions in inten-
sion and functions in extension and similarly ‘intensions’ and ‘extensions’ as
nouns in their own right. We speak of relations in intension and relations
in extension.

The standard illustration in the literature concerns the two properties of
being human and being a featherless biped—a creature with two legs and no
feathers. There is a perfectly good sense in which these concepts are the same
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(one can tell that this illustration dates from before the time when the West
had encountered Australia with its kangaroos!) but there is also a perfectly
good sense in which they are different. We name these two senses by saying
that ‘human’ and ‘featherless biped’ are the same property in extension, but
different properties in intension.

A more modern and more topical illustration is as follows. A piece of code
that needs to call another function can do it in either of two ways. If the function
being called is going to be called often, on a restricted range of arguments, and
is hard to compute, then the obvious thing to do is compute the set of values
in advance, and store them in a look-up table in line in the code. On the other
hand if the function to be called isn’t going to be called very often, and the set
of arguments on which it is to be called cannot be constrained in advance, and
if there is an easy algorithm available to compute it then the obvious strategy is
to write code for that algorithm, and call it when needed. In the first case the
embedded subordinate function is represented as a function in extension, and
in the second case as a function in intension.

Functions-in-extension are sometimes called the graphs of the corresponding
functions-in-intension: the graph of a function f is {(z,y) : z = f(y)}.

For years the first question on the example sheet I have been giving my
first-year discrete mathematics students has been “How many binary relations
are there on a set with n elements?” One cannot begin to answer this unless
one realises the question must be “How many binary relations-in-extension on
a set with n elements?” (There is no answer to “how many binary relations-in-
extension ... )

I remember being disquieted—when I was a A-level student—Dby being shown
a proof that if one integrates Az. [ 1.dz one gets Az.log(x). The proof procedes
by showing that the two functions are the same function-in-extension—or at
least that they are both roots of the one functional equation, and that didn’t
satisfy me.

The intension/extension distinction is not a formal technical device, and it
does not need to be conceived or used rigorously, but as a piece of mathematical
slang it is very useful.

In recent times there has been increasingly the idea that intensions are the
sort of things one evaluates and that they evaluate to extensions.

Notation for sets and relations

Relations in extension can be thought of as sets of ordered tuples, so we’d better
ensure we have properly defined elementary set-theoretic gadgetry to hand.
Yz : F(z)} for the set of things that are F' and ‘C’ for subset-of are pre-
sumably familiar, ‘z D y’ (read ‘z is a superset of y’) perhaps less so: it
means the same as y C x’. Set difference: z \ y is the set of things that
are in x but not in y. The symmetric difference: xAy, of z and y is the
set of things in one or other but not both: (z\ y) U (y \ ). (This is some-
times written ‘XOR’, but we will reserve X0R for the corresponding propositional
connective). Sumset: (Jz := {y : (F2)(y € z A z € z)}; and intersection
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Nz :={y : (V2)(z € £ — y € z)}. These will also be written in indexed
form at times: (J;c; Ai;. The composition of two relations R and S which is
{{z,2) : Fy)((z,y) € RA(y,2) € S)} is notated ‘RoS’. RoR is written R*. R"
similarly. The inverse or converse of R—written ‘R~!is {(z,y) : (y,z) € R}.
However, do not be misled by this exponential notation into thinking that
Ro R!is the identity. What is it?

It is sometimes convenient to think of a binary relation as a matrix whose
entries are true and false. In principle this is not a good habit, because it
forces one to decide on an ordering of the underlying set (rows and columns
have to be put down in an order after all) and so is less general than the picture
of binary relations-in-extension as sets of ordered pairs. It also assumes thereby
that every set can be totally ordered, and this is a non-trivial consequence of
the axiom of choice, a contentious assumption of which more later. However it
does give a nice picture of converses: the inverse/converse of R corresponds to
the transpose of the matrix corresponding to R, and the matrix corresponding
to Ro S is the product of the two matrices in the obvious way.

A relation R is transitive if V2VyVz 2 RyAyRz — Rz (or, in brief, R? C R).
A relation R is symmetrical if VzVy(zRy +— yRz) or R= R .

An equivalence relation is symmetrical, transitive and reflexive. An equiv-
alence relation ~ is a congruence relation for an n-ary operation f if when-
ever x; ~ y; for i < n then f(Z) ~ f(7). (The notation “Z” abbreviates a list
of variables, all of the shape ‘@’ with different subscripts.) A cuddly familiar
example is integers mod k: congruence mod k is a congruence relation for ad-
dition and multiplication of natural numbers. We will need this again in the
sections 3.4 (on Boolean algebra) 5.7 (on ultraproducts) and in chapter 7, the
chapter on ordinal and cardinal arithmetic.

I’ve used the adjective ‘reflexive’ without defining it. A binary relation on
a set X is reflexive if it relates every member of X to itself. (A relation is
irreflexive if it is disjoint from the identity relation: note that irreflexive #
not-reflexive!) That is to say R is reflexive iff (Vx € X)((z,z) € R). Notice that
this means that reflexivity is not a property of a relation, but of the structure
(X, R) of which the relation is a component.

This annoying feature of reflexivity (notice that irreflexivity does not have
it) is exhibited also by surjectivity which is a property not of a function but
a function-with-a-range. Totality likewise is a property of a function-and-an-
intended-domain. A function f on a set X is total if it is defined for every
argument in X.

Some mathematical cultures make this explicit, saying that a function is an
ordered triple of domain, range, and a set of ordered pairs. This notation has
the advantage of clarity, but it has not yet won the day.

In contrast injectivity of a function-in-extension is a property solely of the
function-in-extension and not of the intended domain or range. A function is
injective iff it never sends distinct arguments to the same value.

While on the subject of functions, a last notational point. In most math-
ematical usage the terminology ‘f(z)’ is overloaded: It can denote either the
value that the function f allocates to the argument = or the set of values that
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f gives to the arguments in the set z. Normally this overloading does not cause
any confusion, because typically it is clear from context which is meant. f(r) is
clearly a number and f(R) a set of numbers. The give-away here is in the style
of letter used for the argument. The human brain is very good at exploiting
cues like this for useful information (as witness the convenience of the notation
M = (M, R), and the readability of the Ahlfors example on p. 9 above) but
there are circumstances in which contextual decoding doesn’t work. If every-
thing is a set (and in set theory—which we meet in chapter 8—everything is,
indeed, a set!) there is no way of telling which of the two f(z) is: it could be
either!

Accordingly we will use the following notation, which is nowadays standard:
f “x for the set of values f allocates to the arguments in the set x, and f(z) will
continue to be the value that f assigns to the argument x. Older books on set
theory sometimes use for this the notation f‘z (“One apostrophe, one value”;
f“x is “plural apostrophe, set of values”) for our f(z) but this notation (due
originally to Russell and Whitehead) is now obsolescent.

Order

Now for a number of ideas that emerge from the concept of order. Order re-
lations obviously have to be transitive, and they can’t be symmetrical because
then they wouldn’t distinguish things would they? Indeed transitive relations
that are symmetrical are called equivalence relations (as long as they’re reflex-
ive). So how do we capture this failure of symmetry? We start by noticing that
although an order relation must of course be transitive and can’t be symmet-
rical, it’s not obvious whether we want it to be reflexive or irreflexive. Since
order relations represent our ways of arranging distinct things, they don’t have
anything to say about whether things are related to themselves or not: they
aren’t naturally invoked with two identical aruments. Is z less than itself? Or
not? Does it matter which way we jump? Reflection on your experience with
< and < on the various kinds of numbers you’ve dealt with (Naturals, integers,
reals and rationals) will make you feel that it doesn’t much matter. After all, in
some sense < and < contain the same information about numbers. (See exercise
1 part 13) This intuition is sound, and we can indeed go either way. These two
ways give rise to two definitions.

A strict partial order is irreflexive, transitive and asymmetrical. (A rela-
tion is asymmetrical if it cannot simultaneously relate x to y and y to . This
of course implies irreflexivity)

A partial order is reflexive, transitive and . .. well it can’t be asymmetrical
because ¢ < x. We need to weaken asymmetry to a condition that says that if
x # y then not both # <y and y < x. This condition, usually expressed as its
contrapositive (see page 1) (Vzy)(z < y Ay < x — x = y) is antisymmetry,
and is the third clause in the definition of partial order.

Notice that when we describe a given binary relation as a ‘partial order’
we are not, precluding the possibility of the order in question being total. The
word ‘partial’ is there (in the common name) because we wish to be able to call
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relations ‘orders’ even if for some z and y they fail to prefer x to y or y to =z,
Total orders are special kinds of orders that never fail in this way. Again, they
come in two flavours.

A strict total order is a strict partial order that satisfies the extra condition
(Vzy)(z < yVy < zVzx =y). Because this condition says there are no more
than three possibilities it is called ‘trichotomy’ (from a Greek word meaning to
cut as in a-tom, lobo-tomy.)

A total order is a partial order with the extra condition (Vzy)(z <yVy <
x). This property is called connexity, and relations bearing it are said to be
connected. Overloading of this last word is a frequent source of confusion, so
beware.

A poset (X, <x) is a set with a partial ordering. The expression “strict
poset” which one might expect to see being used to denote a set-with-strict-
partial-order seems not to be used.

EXERCISE 1 1. How many binary relations are there on a set of size n?

2. How many of them are reflexive?

o

How many are fuzzies? (A fuzzy is a binary relation that is symmetric
and reflexive)

How many of them are symmetrical?
How many of them are antisymmetrical?
How many are total ordersg?

How many are trichotomous?

How many are antisymmetrical and trichotomous?

© XS T

There are the same number of antisymmetrical relations as trichotomous.
Prove this to be true without working out the precise number.

10. (for the thoughtful student) If you have done parts 8 and j correctly the
answers will be the same. Is there a reason why they should be the same?
(Revisit this later in connection with natural bijections.)

11. Do not answer this question. How many partial orders are there on a set
of size n?

12. Do not answer this question. How many strict partial orders are there on
a set of size n?

13. Should the answers to the two previous questions be the same or different?
Give reasons. (Compare this with your answer to question 10 above.)

14. Show that the proportion of relations on a set with n members that are
extensional tends to 1 as n — oo.
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A monotone function from a poset (A, <4) to a poset (B, <p) is a function
f:A— B such that Vay(z <a y — f(z) <p f(y))-

The arity of a function or a relation is the number of arguments it is sup-
posed to have.

The restriction of a relation R to a domain X (which is RN X"™ where n
is the arity of R) is denoted by ‘R | X’. A chain in a poset (X, <x) is a total
ordering (X', <x| X') where X' C X. In words: a chain in a poset is a subset
totally ordered by the restriction of the order relation.

The confident reader ought to be willing to have a stab at guessing what
‘antichain’ means. An antichain in a poset is a subset of the carrier set such
that the restriction of the order relation to it is the identity relation.

An upper semilatticeis a poset (X, <x) such that (Vz1,22)(Jy >x z1,22)(V2) (21 <x
zAxe <x z =y <x z). By antisymmetry, if there is such a y it is unique, and
we write it x1 V x2 and refer to it as the supremum (sup for short) or least
upper bound (lub for short, also known as join) of z; and z2. A lower semi-
lattice is a also a poset, (X, <x) such that (Vz1,z2)(Jy <x x1,22)(V2)(x1 >x
zANzy >x z — Yy >x z). By antisymmetry, if there is such a y it is unique,
and we write it x; A zz and refer to it as the infimum (or inf for short) or the
greatest lower bound (or glb for short also known as meet) of z; and z».
A lattice is something that is both an upper- and a lower-semilattice. Some
people apply the word ‘lattice’ only to things with a top and a bottom element,
and we will adhere to this custom here. The thinking behind this decision is
that if one thinks of a lattice as a poset in which every finite set of elements has
both a sup and an inf (which appears to follow by an easy induction from the
definition given) then one expects the empty set to have a sup and an inf—it’s
finite after all. And manifestly the sup and inf of the empty set must be the
bottom and the top element of the lattice (and yes, it is that way round not the
other: check it!) A complete upper (resp. lower) semilattice is an upper (resp.
lower) semilattice (X, <) where every subset X’ of X (not just finite ones) has
a sup (resp. inf.). We write these sups and inf (or lubs and glbs) in the style
\ X' (sup or lub) and A X’ (inf or glb). Everyone agrees that a complete lattice
must have a top element and a bottom element.

An easy induction shows that in a lattice every finite set of elements has a
sup and an inf. Notice also that in any lattice the set of things above a given
element is also a lattice. These things are sometimes called “upper sets”!

If (X, <x)is aposet, asubset X' C X of X is a directed subset if (Vz 2z, €
X"Y(3zs € X') (21 <x 3 Ax2 <x x3). (So for example if (X, <x) is a total
order every subset is directed). A directed union is the sumset of a directed
set. Similarly directed sups.

(X, <x) is a Complete Partial Order if every subset has a sup. It follows
immediately that every subset also has an inf, so a complete poset is simply a
complete lattice. (X, <x) is a chain-complete poset if every chain has a sup.

A lattice is distributive if Vayz(z A (y V 2) = (2 Ay) V (x A 2))). It is

1 “In Spain, all the best upper sets do it, Lithuanians and Letts do it, let’s do it, let’s fall
in love! ... ”
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dually distributive if Vzyz(z V (y A 2) = (2 Vy) A (z V 2))).

EXERCISE 2 A partition II of a set x is a family of pairwise disjoint nonempty
subsets of x which collectively exhaust x. The nonempty subsets which comprise
the partition are called pieces. If II; and Iy are partitions of x we say that II;
refines 11, if every piece of 111 is a subset of a piece of Il5.

Show that for any set X the collection of partitions of X is a complete lattice
under refinement. Is it distributive?

If sups and infs always exist, we can introduce a notation for them, and
‘z V y’ for the sup and ‘@z Ay’ for the inf are both standard. ‘0’ and ‘1’ for the
bottom and top element are standard, but not universal: in some cultures the
bottom element is written ‘L’. Using these notations we can write down the
following axioms for lattices.
(Vay)(z V (z Ay) = z);
(Vay)(z A (z Vy) = z);
(Vzyz)(z V (y V 2)
(Vzyz)(z A (y A 2)
(Vay)(@Vy=yVa);
(Vay)(

)
)

);
);

=(zVy)Vz
=(xzAy) Az
T Ay=yAx).

Axioms for 0 and 1:

(Vo) (z V1 =1);
(Vz)(z A1 = x);
(Vz)(z A0 =0);
(Vz)(z VO = x).

For distributive lattices one adds:
Veyz(x Ay Vz)=(xAy)V(xAz)).

None of these axioms mention the partial order! In fact we can define < in
terms of A or V by # < y iff (x Vy) =y (or by (z Ay) = z). Readers should
check this for themselves.

A lattice is complemented if it has elements 1 (“top”) and 0 (or L “bot-
tom”) and a function (written in various ways) - s.t. Vo ((xA—z = 0)A(zV-z =
1)). (Note overloading of ‘A’!) A Boolean algebra is a distributed comple-
mented lattice.

Products

The product of two structures (X, R) and (Y, S) is the structure whose carrier
set is X x Y, with the binary relation defined “pointwise”:

(X % Y, {{(t,u), (v,0)) : (t,v) € RA (u,w) € S})

You have encountered this in products of groups, for example. Make a
note here (though we shall not make use of this until section 5.7) that we can
form products of more than two things at a time, and we will write things like
‘[I;er Ai’ to mean a product of As indexed by a set I.
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If (A,<4) and (B,<p) are two posets we can define a partial order on
functions from A to B by setting f < g iff (Va € A)(f(a) < g(a)). We write
‘A — B’ for the set of all functions from A to B. Overloading of ‘—’ in this way
in no mere overloading: it is a divine ambiguity, known as the Curry-Howard
correspondence, on which a wealth of ink has been spent. Try, for example,
Girard Lafont and Taylor, op. cit.

Now if (X, <x) and (Y, <y) are two partial orders then we can define par-
tial orders on X X Y in several ways. The product defined above is called
the pointwise product. In the lexicographic order of the product we set
(2,y) <tex (2',y") if & <x 2’ or z = 2’ and y <y y'. Although straightforward
examples of lexicographic products are scarce, there are a number of combina-
torial devices whioch have the flavour of lexicographic product. One example
is the Olympic league table: one grades nations in the first instance by the
number of gold medals their gladiators (oops, athletes) have won, then by the
number of silvers and only if these fail to discriminate them does one count the
number of bronzes. Strictly one is defining a lexicographic order not on the
nations themselves, but on their medal hauls. This induces a preorder on the
set of nations which may or may not be antisymmetrical: two nations can have
the same medal haul.

Other examples include the devices used to determine which team goes for-
ward from a qualifying group in world cup football. Prima facie this should be
the team withe the largest number of point, but if two teams have the same
number of points one looks at the numbner of goals the two teams have scored,
and so on, examining the values the two teams take under a sequence of pa-
rameters of dwindling importance. In cricket the analysis of a bowler who takes
x wickets while conceding y runs is preferred to that of a bowler who takes z’
wickets while conceding y' runs as long as ¢ > 2’ or z = ' Ay < y’. However in
none of these naturally occurring cases is one ordering tuples of things: rather
one is trying to order things by combining in various ways various preorders of
the things. The underlying intuition is the same.

Notice that the lexicographic product is a superset of the pointwise product.
If we have two partial orders with the same domain and (the graph of, or
extension of) one is a superset of (the graph of, or extension of) the other, we
say the first extends the second. The colex ordering of X x Y orders pairs
according to last difference. The colex ordering too is a superset of the pointwise
product ordering. In fact the pointwise product ordering is the intersection of
the lexicographic ordering and the colex ordering.

One naturally tends to think of partial orders as preference orders. They
aren’t all of them of course, but it enables us to motivate the distinction between
the pointwise product of P x Q (which corresponds to impartiality between
parameters P and Q) and the lexicographic product (according to which any
increase in P is more important than any increase in Q). In real life preference
orderings on products of posets are usually complicated. Lexicographic products
are extremely unlikely to represent your views on baskets of apples and oranges
because even if you prefer apples to oranges, you would be unlikely to prefer
any increase (however small) in the number of apples you are offered to any
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increase (however large) in the number of oranges—unless, that is, you have no
time for oranges anyway. And in that case you wouldn’t prefer an apple and
two oranges to an apple and one orange.

On the other hand your preference ordering is likely nevertheless to be finer
than the pointwise product ordering: according to the pointwise product or-
dering you would be unable to decide between a single orange-with-a-pound-
of-apples, and two-oranges-with-one-apple. You’d have to be very blasé not
to prefer the first. After all, to a certain extent apples and oranges are inter-
changeable: realistic product (preference) orders refine the product order but
are typically not as refined as a lexicographic order. We must not get too deeply
into utility theory! Note merely that it is a sensible motivation for the study of
orderings and products of orderings.

But before leaving preference orderings altogether the reader should notice
at least that preference orders have another odd feature not shared by partial
orders in general. A £ B £ A and B > C doesn’t imply A > C, though one
expects it to if the ordering is a preference ordering. This makes a nice exercise

EXERCISE 3 Are the two following conditions on partial orders equivalent?
1. Vayz)z<zLyLae—2z2<y)
2. Vayz)z>zxLyLax—2z>y).

(This exercise uses two common conventions that it takes a logician to spell
out. (i) when ‘<’ and <’ appear in the same formula they denote a partial
ordering and its strict part respectively; (ii) that the relations < and > are
converses of each other.)

Given a subset X C (P x @), the points in X that are maximal in the
pointwise product P X, Q are called “Pareto-efficient points” by economists.
Sometimes called “Pareto-optimal” because if X is the set of points that are in
some sense accessible, or possible, or something, then a Pareto-efficient point in
X is one that, once one has reached it, one cannot find another point in X that
makes one of the coordinates better without simultaneously making another one
worse. Pareto was an italian economist. Natural illustrations are defective in
the way that we have seen that natural illustrations of lexicographic products
are defective, but they might still help. C'Os is the compound most easily put
into a supercritical state. The critical point of a substance is that temperature
and pressure at which the difference between liquid and gas disappears. All
compounds other than C'Os require either a more extreme temperature or a
more extreme pressure or both. CO; is a Pareto-efficient point. Ammonia
(N H3) might be Pareto-efficient too, I'm not sure. The mathematician Green
(after whom Green Street in Cambridge is named, and who invented Green
functions) is the most famous most recent person of whom no picture survives.

1. Show that a totally ordered poset is a lattice if and only if it has a top
and bottom element. Show that such a poset is always distributive.
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2. Which of the following are lattices?
(i) The set of subspaces of a vector space under inclusion.
(ii) The set of positive integers under division.
(iii) The set of non-negative integers under division.
(iv) The set of square-free numbers under division.
Where you find a lattice say whether or not it is distributive.

3. Let X be an arbitrary infinite set. Discuss the following sets and explain
whether or not they are lattices, complete lattices, chain-complete partial
orders.

(i) The set of all transitive relations on X, partially ordered by set inclu-
sion.

(ii) The set of all total orderings of subsets of X, partially ordered by set
inclusion.

(iii) The set of all antisymmetrical relations on X, partially ordered by
set inclusion.

4. Show that distributivity and dual distributivity are the same. (see defini-
tion page 16)

5. Let P = (P,<p) and Q = (Q,<g) be two posets. Are P x;., Q and
Q Xieg P isomorphic? Are P Xp, Q and Q Xp, P isomorphic? (The
subscripts mean lexicographic and pointwise products).

6. Show that a complete upper semilattice is a lattice. Must a complete
lattice be complemented?

Give some examples to show that chain-complete posets are not always
complete lattices.

7. Consider the set I? = {(z,y) € R? : 0 < z,y < 1}, the unit square in the
first quadrant in the plane.
Equip I? with the pointwise order. Identify the maximal elements (if any)
and the sup of the following sets:
(i) The points on the circle radius 1/2 and centre (1/2,1/2).
(ii) The points in the open disc radius 1/2 and centre (1/2,1/2).
(iii) The points with irrational coordinates in I2.

Now do the same for the lexicographic order.

Logical connectives

We will use standard notation for the connectives of propositional logic: ‘V’,
‘A’ for ‘or’ and ‘and’. We will also write A\;_;p; and suchlike for indexed con-
junctions (and disjunctions). We write ‘p — ¢’ for the connective that will be
equivalent to ‘=(p A =q)’ or to ‘=pV ¢’. — is the material conditional. A
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conditional? is a connective that is an attempt to formalise a relation of impli-
cation. The material conditional is the simplest one: p — ¢ evaluates to true
unless p evaluates to true and ¢ evaluates to false.

Lots of students don’t like the material conditional as an account of implica-
tion. The usual cause of this unease is that in some cases a material conditional
evaluates to true for what seem to them to be spurious and thoroughly unsatis-
factory reasons: namely that p is false or that ¢ is true. How can ¢ follow from p
merely because ¢ happens to be true? The meaning of p might have no bearing
on ¢ whatever! This unease shows that we think we are attempting to formalise
a relation between intensions not extensions. A and V are also relations between
intensions but they also make sense applied to extensions. Now if p implies ¢,
what does this tell us about what p and ¢ evaluate to? Well, at the very least,
it tells us that p can’t evaluate to true when ¢ evaluates to false. This rule
“from p and p — ¢ infer ¢” is called modus ponens. ¢ is the conclusion, p is
the minor premiss and p — ¢ is the major premiss. Thus we can expect the
extension corresponding to a conditional to satisfy modus ponens at the very
least.

(Reasonable people might expect that what one has to do next is solve the
problem of what the correct notion of conditional is for intensions. This is a
very hard problem, since it involves thinking about the internal structure of
intensions and nobody really has a clue about that. It has spawned a vast and
inconclusive literature. Fortunately it turns out that we can skirt it, and resolve
just to use the material conditional all the time.)

How many extensions are there that satisfy modus ponens? It is easy to check
that the following list is exhaustive. Apq.q, Apg.(p <— ¢q), Apg.—p, Apq.(—pV q),
Apg.false. Evidently the material conditional is the weakest of these: the one
that holds in the largest number of cases. To be precise: among those functions
from {true, false} x {true, false} — {true, false} that satisfy modus
ponens it is the greatest in the sense of the ordering on maps from posets to
posets that we defined on page 1.

In cases where the conditional is evaluated to true merely for spurious rea-
sons then no harm can be done by accepting that evaluation. For consider: if
it is evaluated to true merely because p evaluates to false then we are never
going to be able to invoke it (as a major premiss at least) and if it is evaluated to
true merely because ¢ evaluates to true then if we invoke it as a major premiss
the only thing we can conclude—namely g—is something we knew anyway.

So we have a conditional that is defined on extensions. We can copy this
back to intensions by saying that P implies @) if what P evaluates to materially
implies what @ evaluates to. This doesn’t solve the problem of identifying the
intensional condition, but it gets us a surprisingly long way: although we will
touch on other connectives the material conditional is the only formalisation of
implication that we will need here.

Before we leave conditionals altogether: the conditional =A — —A is the

2This word ‘conditional’ is overloaded as well. Often a formula whose principal (‘top level’)
connective is a conditional will be said to be a conditional.
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contrapositive of the conditional A — B, and the converse is B — A. A
formula like A +— B is biconditional.

The quantifier ‘(3!z) ... ’ is to be read: “there is a unique z such that ...
7. If a is a thing that is ¢ then it is a witness to the formula ‘(3z)@(z)’
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Chapter 2

Recursive Datatypes

2.1 Recursive Datatypes

2.1.1 Definition

‘recursive datatype’ is the sexy, postmodern, techno-friendly way to talk about
things that mathematicians used to call ‘inductively defined sets’. I shall ab-
breviate these two words to the neologism ‘rectype’.

The standard definition of the naturals is as the least set containing zero
and closed under successor, or, using some notation we have just acquired:

N=({Y:0eYASYCY}

Of course IN is merely the simplest example, but it exhibits the central
features of a declaration of a rectype. In general a rectype is a set defined as
the smallest (C-least) set containing some founders' and closed under certain
operations, commonly called constructors. (This is standard terminology). IN
has only one founder, namely 0, and only one constructor, namely successor
(often written ‘S’ or ‘succ’ S(z) is z + 1).

2.1.2 Structural induction

This definition of IN justifies induction over it. If F(0) and F(n) — F(n + 1)
then {n : F(n)} is one of these Y that contains 0 and is closed under S, and
therefore is a superset of IN, so every natural number is F'. It’s a bit like original
sin: if F is a property that holds of 0, and holds of n+ 1 whenever it holds of n,
then each natural number is innoculated with it as it is born. Hence induction.

It also justifies definition by recursion. You might like to try proving by
mathematical induction that—for example—all functions satisfying the recur-
sion

0:=1;, (n+1)l:=(n+1)- n!

IThis isn’t standard terminology, but T like it and will use it.

23
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agree on all arguments. That is to say we can use induction to prove the
uniqueness of the function being defined.

2.1.3 Generalise from IN

N

is of course the simplest example of a rectype: it has only one founder and only
one constructor, and that constructor is unary.

My first encounter with rectypes was when I was exposed to compound past
tenses in latin, when I was about eight. I pointed out to my latin teacher that
the construction that gives rise to the pluperfect tense from the perfect (in “By
the time I reached the station the train had left” the first verb is in the perfect
and the second is in the pluperfect) could be applied again, and what was the
resulting tense called, please? Maybe the reader has had similar experiences.
In UK law if it is a crime to do X, it is also a crime to attempt to do X or to
conspire to do X. So presumably it’s a crime to attempt to conspire to do X?
Crimes and tenses form recursive datatypes.

There are less bizarre examples than these which will concern us later. An
X-list is either the empty object or the result of consing a member of X onto
the front of an X-list. Thus a list can be thought of as a function from an initial
segment of IN to X. Thought of as a rectype the family of X-lists has a founder
(the empty list) and a single binary constructor: cons. Later in this text there
will be illustrations using ML pseudocode, and in ML the notation h: :t denotes
the list obtained by consing the object h onto the front of the list t. t is the
tail of h::t. h is its head.

Rectypes are ubiquitous, and different tribes will find different examples
obvious. Computer scientists might think of lists; mathematicians might think
of the subgroup of a group generated by a set of elements of the group; a more
advanced example is the family of Borel sets—one can prove things about all
Borel sets by showing that every open set has a property F', the complement
of a thing with F has F' and the union of countably many things with F' has
F. (Like being measurable!). Logicians will think of the rectype of formula, or
the rectype of primitive recursive functions which we will see later. Words in an
algebra form a rectype. A bundle of important examples which we will discuss
later features the transitive closure *R of a (binary) relation R, which is the
intersection of all transitive supersets of R, and the symmetric closure of R (the
intersection of all symmetric supersets of R) and the reflexive closure similarly.

The sexiest rectype of all is Conway Games. (see Conway Op cit). Donald
Knuth has popularised the material in this book with the catchphrase “sur-
real numbers” but mathematics students should be equal to reading Conway’s
original)

We can develop analogues of mathematical induction for any recursive datatype,
and I shall not spell out the details here, as we shall develop them in each case
as we need them. This kind of induction over a rectype is nowadays called
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structural induction.?

2.1.4 Wellfounded Induction

Wellfounded relations and induction

Suppose we have a domain with a binary relation R on it, and we want to be
able to infer

vz ()
from

(Vo) (Vy) (yRz — P(y)) = (x))

We will be using frequently the expression “R-predecessor of z” so we had
better explain it. y is an R-predecessor of z if R(y,z). Notice that there
is no “case n = 0” clause in this more general form of induction: the premiss
we are going to use implies immediately that a thing with no R-predecessors
must have 1. The expression “(Yy)(R(y,z) — ¥(y))” is called the induction
hypothesis. The first line says that if the induction hypothesis is satisfied,
then z is ¢ too. Finally the inference we are trying to draw is this: if x has
¥ whenever the induction hypothesis is satisfied then everything has ). When
can we do this? We must try to identify some condition on R that is equivalent
to the assertion that this is a legitimate inference to draw in general (i.e., for
any predicate ).

Why should anyone want to draw such an inference? The antecedent says
“r is 1 as long as all the immediate R-predecessors of x are v)”, and there are
plenty of situations where we wish to be able to argue in this way. Take R(z,y)
to be “z is a parent of y” and then the inference from “Children of blue-eyed
parents have blue eyes” to “Everyone has blue eyes” is an instance of the rule
schematised above. As it happens this is a case where the relation R in question
does not satisfy the necessary condition, for it is in fact the case that children
of blue-eyed parents have blue eyes and yet not everyone is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are
interested in, and suppose that the inference

(Vy) (R(y, ) = ¥(y)) = P(x)
(V) (¢(x))
has failed for some choice 9 of predicate. 2> Then we will see what this tells us

about R. To say that R is wellfounded all we have to do is legislate that this
failure (whatever it is) cannot happen for any choice of .

2Historical Note: Russell and Whitehead called it ancestral induction because they
called the transitive closure of a relation the ancestral of the relation. I used their terminology
for years—and I still think it is superior—and but the battle for it has been lost; readers should
not expect the word ‘ancestral’ to be widely understood any longer, though they may see it
in the older literature.

However in Set Theory ‘transitive closure’ is used to mean something different and I shall
continue to use ‘ancestral’ instead of ‘transitive closure’ where this is needed to preclude
ambiguity.

3tangential remark about premisses above and conclusions below the line
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Let ¢ be some predicate for which the inference fails. Consider the set of
all things which are not 1. Let x be something with no R-predecessors. Then
all R-predecessors of x are 1 (vacuously!) and therefore z is ¢ too. This tells
us that if y is something that is not v then there must be some y' such that
R(y',y) and y' is not ¢ either. If there weren’t, y would be . This tells us that
the collection of things which are not ¢ “has no R-least member” in the sense
that everything in that collection has an R-predecessor in that collection.

Thus we can see that if induction fails over R then there is a subset X of the
domain (to wit, the extension of the predicate for which induction fails) such
that every member of X has an R-predecessor in X.

Notice that ‘¢’ has disappeared from our calculations: what we are left with
is a condition on R. All we have to do is exclude the possibility of the domain
of R having any such pathological subsets, and we will have justified induction
over R. Accordingly we will attach great importance to the following condition
on R:

DEFINITION 1 R is wellfounded iff every nonempty subset X of the domain
of R has an element x such that all the R-predecessors of = lie outside X. (z
is an “R-minimal” element of X .)

This definition comes with a health warning: it is easy to misremember.
The only reliable way to remember it correctly is to rerun in your mind the
discussion we have gone through: wellfoundedness is precisely what one needs
a realtion R to have if one is to be able to do induction over R. No more and
no less. The definition is not memorable, but it is reconstructible.

Notice that for a finite binary structure to be wellfounded it is neccessary
and sufficient for it to have no loops: a loop is manifestly a subset with no least
element!

A wellordering is a wellfounded strict total order. (No wellfounded relation
can be reflexive so wellfounded orders have to be of the strict flavour). Perhaps
we should have some examples of wellorderings. Obviously any finite total
order will be a wellorder! What about infinite wellorderings? The only natural
example of an infinite wellordering is one we have already seen—IN. Notice that
the real line is not a wellordering, for it is a simple matter to find sets of real
numbers with no least element, for example the set of all real numbers strictly
greater than 0. This set has a lower bound all right—namely 0—but this lower
bound is not a member of the set and so cannot be the least member of it.*

We note here two facts which we will come in useful later (see remark 38
and chapter 7):

EXERCISE 4 A pointwise product of two wellfounded (strict) partial orders is
a wellfounded (strict) partial order.

A lezxicographic product of two wellfounded (strict) partial orders is a well-
founded (strict) partial order.

41t is important not to get confused (as many people do) by the fact that every set of reals
has a greatest lower bound. For example, {x € R : x > 0} has no least member, but it does
have a greatest lower bound, which is of course 0. Notice that 0 ¢ {x € R: z > 0}!!
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The Axiom of Dependent Choices, usually known as DC, says that if
R is a relation such that (Vo € Dom(R))(3y)(R(z,y)) then there is an infinite
R-chain.

The full Axiom of Choice is:

If X is a set of nonempty sets, there is a function f: X — [JX s.t. (Vz €
X)(f(z) € z). Such a function is a selection function.

A definition of wellfoundedness which is equivalent to the above if we have
DC is the following. R is wellfounded if there is no f : IN — dom(R) s.t.
(Vn)(R(f(n + 1), f(n)).

Beware! One might think that the easiest and most natural definition of
wellfoundedness is this last one in terms of descending chains. (It’s certainly
a lot easier to understand!) However, defining wellfoundedness in terms of
descending chains doesn’t make for an easy justification of induction: one then
finds that one needs DC to deduce induction. Its use is to be avoided.

The official definition of wellfoundedness is a lot more unwieldy than the
definition in terms of descending sequences. In consequence it is very easy to
misremember it. A common mistake is to think that a relation is wellfounded
if its domain has a minimal element, and to forget that every nonempty subset
must have a minimal element. The only context in which this definition makes
any sense at all is induction, and the only way to understand the definition or to
reconstruct it is to remember that it is cooked up precisely to justify induction.
This last fact is the content of the next theorem.

Theorem 2 R is a wellfounded relation iff we can do wellfounded induction
over the domain of R.

Proof:

The left-to-right inference is immediate: The right-to-left inference is rather
more interesting.

What we have to do is use R-induction to prove that every subset of the
domain of R has an R-minimal element. But how can we do this by R-induction?
The trick is to prove by R-induction (“on z”) that every subset of the domain
of R to which x belongs contains an R-minimal element. Let us abbreviate this
to “z is R-regular”.

Now let ¢ be such that every R-predecessor of it is R-regular, but such that
it itself is not R-regular. We will derive a contradiction. Then there is some
X C dom(R) such that o € X and X has no R-minimal element. In particular
2o is not an R-minimal element of X. So there must be z1 s.t. x1Rxo and
x1 € X. But then z; is likewise not R-regular. But by hypothesis everything
R-related to z¢p was R-regular. Contradiction.

Therefore everything in dom(R) is R-regular. Now to show that any subset
X of dom(R) is either empty or has an R-minimal element. If X is empty we’re
ok. If it isn’t, it has a member z. Now we have just shown by R-induction that
x is R-regular, so X has an R-minimal element as desired. ]

Wellfoundedness is a very important concept throughout mathematics, but
it’s usually spelled out only by logicians. (That’s why you read it here first).
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Although the rhetoric of mathematics usually presents mathematics as a static
edifice, mathematicians do in fact think dynamically, and this becomes apparent
in mathematical slang. Mathematicians often speak of constructions underlying
proofs, and typically for a proof to succeed it is necessary for the construction
in question to terminate. This need is most obvious in computer science, where
one routinely has the task of showing that a program is well-behaved in the
sense that every run of it halts. Typically a program has a main loop that it
goes through a number (which one hopes will be finite!) of times. The way
to prove that it eventually halts is to find a parameter changed by passage
through the loop. A common and trivial example is the count variable found
in many programs that not affected by the passage through the loop but only
by the decrement command at the start of each pass. Sometimes the role is
played by a program variable that is decremented at each pass —not explicitly
decremented at the start of each pass like a count variable, but as a side-effect
of what happens on each pass. In general we look for a parameter which may
not be a program variable at all, but some construct put together from them
that takes values in a domain X with a binary relation R on it such that (i)
at each pass through the loop the value of the parameter changes from its old
value v to a new value v’ such that (v,v') € R and (ii) any sequence v, vy ...
where for all n, (v, vpe1) is finite.

If we can do this then we know that we can only make finitely many passes
through the loop, so the program will halt. Condition (ii) is the descending-
sequence version of wellfoundedness.

EXERCISE 5 The game of Sylver Coinage was invented by Conway, Berlekamp
and Guy (op cit) It is played by two players, I and 11, who move alternately,
with I starting. They choose natural numbers greater than 1 and at each stage
the player whose turn it is to play must play a number that is not a sum of
multiples of any of the numbers chosen so far. The last player loses.

Notice that by ‘sum of multiples’ we mean ‘sum of positive multiples’. The
give-away is in the name: ‘Sylver Coinage’. What the players are doing is trying
at each stage to invent a new denomination of coin, one that is of a value that
cannot be represented by assembling coins of the denominations invented so far.
(There is a significance to the spelling of ‘silver’ but I don’t think we need to
concern ourselves with that.)

Prove that no play of this game can go on for ever.

The way to do this is to identify a parameter which is altered somehow by
each move. The set of values this parameter can take is to have a wellfounded
relation defined on it, and each move changes the value of the parameter to a
new value related to the old by the wellfounded relation. The question for you
is: what is this parameter? and what is the wellfounded relation?

(You should give a much more rigorous proof of this than of your answer to
exercise 8 below: it is quite easy to persuade oneself that all plays are indeed
finite as claimed, but rather harder to present this intuition as reasoning about
a wellfounded relation)

As we noted earlier, we can think of binary relations as matrices, (pictures)
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but can also think of them as digraphs, where there is a vertex for each element
of the domain, and an edge from a to b if a is related to b. This is a very
natural thing to do in the present context, since we can also think of the arrows
as representing a possible step taken by the program in question. It also gives
us a convenient way of thinking about composition and transitive closures. a
is related to b by R™ if there is a path of length n from a to b in the digraph
picture of R, and a is related to b by the transitive closure of R if there is a path
from a to b at all. It also makes it very easy to see that the transitive closure
of a symmetric relation is symmetric, and makes it obvious that every subset
of a wellfounded relation is wellfounded. This makes it easy to explain why
pointwise products of wfs are wf. By the same token, a lexicographic product
of two wellfounded relations (being a subset of the pointwise product) will also
be wellfounded.

[HOLE picture here of the four-element boolean algebra withand without
heads on the arrows]

The digraph picture gives rise to Hasse diagrams. When drawing a digraph
of a transitive relation R one can safely leave out a lot of arrows and still display
the same information: all one has to draw is the arrows for a relation whose
transitive closure is R.

EXERCISE 6 Find an example to illustrate the fact that for an arbitrary tran-
sitive relation there is no minimal relation relation of which it is the transitive
closure.

In fact we can leave out the heads on the arrows (so we draw in edges
not arrows) by adopting the convention that the end of the edge on which the
arrowhead belongs is the end that is further up the page. (Of course this only
works if the relation is transitive!) The result of doing this is the Hasse diagram
of that transitive relation. The appeal of Hasse diagrams relies on—and to some
extent reinforces—an unspoken (and false!) assumption that every partial order
can be embedded somehow in the plane: every ascending chain is a countable
linear order (in which the rationals cannot be embedded) and every antichain is
isomorphic to a nowhere dense subset of . Related to this is the weaker (but
nevertheless still nontrivial) assumption that all total orders can be embedded in
the real line, as instance the image of Justice, blindfolded with a pair of weighing
scales. Although this is clearly a false assumption that might perhaps push our
intuitions in wrong directions—we in fact need a weak version of the axiom of
choice (see exercise 3.3.1.1) to show that every partial order has a superset that
is a total order—it is not such a crazy idea in computer science, where linearity
of time and of machine addresses compel us to think about extensions of partial
orders of precisely this kind.

Recursion on a wellfounded relation

Theorem 3 Let (X, R) be a wellfounded structure, and g : X xV =V be an
arbitrary (total) function. Then there is a unique total function f : X — V

satisfying (Vo € X)(f(x) = g(z, f{y : yRx}))
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Here V is the universe, so that when we say “g : X xV — V” we mean only
that we are not putting any constraints on what the values of g (or its second
inputs) are to be.

Proof: The idea is very simple. We prove by R-induction that for every x € X
there is a unique function f, satisfying (Vy)(*R(y,z) — f(y) = g(y, f»“{z :
R(z,y)})). We then argue that if we take the union of the f, the result will be
a function, and this function is the function we want.

|

The following commutative diagram might help.

X XP(X)— X xV
R g

X V

f

f1is Xa.(fst a, f“(snd a)). (“leave the first component alone and trans-
late the second under f”). The map R isn’t just the map from X into P(X)
corresponding to R (remember that every subset of X x X corresponds to a
map X — P(X)) but the map that sends a pair (z,y) to (z,{z: R(z,y)}). (V
contains everything: not just junk but sets of junk as well, so you don’t have to
worry about whether values of g are sets or junk).

The reason this crops up here is that all rectypes—since they are generated
by operations—will have a sort of engendering relation® which is related
to the operations that generate the recursive datatype rather in the way that
< is related to the successor operation. The engendering relation is that
binary relation which holds between an object x in the rectype and those objects
“earlier” in the rectype out of which x was built. Thus it holds between a formula
and its subformulze, between a natural number and its predecessors and so on.
Put formally, the (graph of the) engendering relation is the transitive closure of
the union of the (graphs of the) constructors.

The (graph of, extension of) the engendering relation is itself a rectype. For
example, < is the smallest set of ordered pairs containing all pairs (0,n) with
n > 0 and closed under the operation that applies S to both elements of a pair.
(i.e., Ap.(S(fst p), S(snd p))).

The following triviality is important.

Theorem 4 The engendering relation of a rectype is wellfounded

Proof:

Let X be a subset of the rectype that has no minimal element in the sense
of <, the engendering relation. We then prove by structural induction (“on z”)
that (Vy)(y <z =y & X). [ |

5This is not standard terminology.
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We have not assumed that the constructors have finite arity: it is not nec-
essary for the constructors of a rectype to have finite arity for the engendering
relation to be wellfounded. An important example we shall see later is the rec-
type of wellfounded sets in set theory; a standard example from analysis is the
rectype of Borel sets of reals, but by far the most attractive is the rectype of
Conway games in ONAG. A rectype whose constructors are all of finite arity
will be said to have finite character. If in addition it has only finitely many
of them, and only finitely many founders, it will be said to be finitely pre-
sented; if it has finitely many constructors of finite arity, and only countably
many founders, it will be said to be countably presented.

Engendering relations on rectypes give us nice concepts of bounded quan-
tifier. The commonest, most natural and most important example is that of
bounded quantifiers in arithmetic: (Vn < m)(...) and (3n < m)(...) which we
will see a lot more of in chapter 6. The idea is that expressions with bounded
quantifiers only—and no unbounded quantifiers—should be thought of as being
quantifier-free. This is because an injunction to search for something < x is
only an injunction to search among things that you are given if you are given
x, not to scour the entire universe.

(If this is puzzling to you because you do not feel comfortable with predicate
languages, fear not. Put it on the back burner and return to it later, in chapter
5.)

Theorem 4 means that we can always do wellfounded induction over the en-
gendering relation. In this simplest case, IN, this wellfounded induction is often
called strong induction or sometimes course of values induction. Quite often
arguments by wellfounded induction are presented in contrapositive form. We
first establish that if there is a counterexample to what we are trying to prove
then there is an earlier counterexample. However this contradicts wellfounded-
ness. The standard example of this style of proof is due to Fermat, who proved
that 2* + y* = 2? has no nontrivial solutions in IN. It uses the fact that all
pythagorean triples are of the form a? — b2, 2ab, a® + b? to show that for any
solution to z* + y* = 22 there is one with smaller z. This gives us a proof by
wellfounded induction on <y that there are no solutions at all. The details are
fiddly, which is why it’s not an exercise. The following are more straightforward.

EXERCISE 7 Dress up the traditional proof that /2 is irrational into a proof
by wellfounded induction on INx IN.

The following example is the most natural use of this technique known to
me.

EXERCISE 8 A square can be dissected into finitely many squares all of dif-
ferent sizes. (See Martin Gardner: op. cit. ch. 17). Prove that a cube cannot
be dissected into finitely many cubes all of different sizes.

(Do not attempt to give too rigorous a proof.)

EXERCISE 9 .
Computer Science tripos 1993:9:10, available at:
http://www.cl.cam.ac.uk/tripos/y1993.html
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Try also http://wwwis.cs.utwente.nl:8080/ faase/Ha/DE_Knuth.html
for more of the same

EXERCISE 10 You presumably know the proof that the arithmetic mean of
two reals is at least as big as the geometric mean. In fact this works for the
arithmetic and geometric mean of any finite number of reals. The standard
proof proceeds by showing that it works for two reals, and that if it works for n
reals it works for 2n reals, and that if it works for n reals it works for n — 1
reals. (See Aigner-Ziegler, op. cit. pp 99-100). This is a wellfounded induction
over a kinky relation on IN. What is this relation, precisely?

Structural Induction again

We know that structural induction holds for rectypes but we could deduce it
from the wellfoundedness of the engendering relation if we wished. Take the
example of IN. Suppose we know that 0 has property F', and that whenever n
has property F so does S(n). Then the set of integers that are not F, (assuming
there are any) will have no least member, and therefore, by wellfoundedness of
<, will be empty.

This holds in general: we can deduce structural induction from the well-
foundedness of the engendering relation. For example, if we can prove (Vn)(®(n))
by a wellfounded induction over <, then we can prove (Vn)(¥Vm < n)(®(m))
by structural induction.

Recursive datatypes ———  structural induction

Wellfoundedness of engendering relation — wellfounded induction

Other uses of wellfoundedness

Intuitions of wellfoundedness and failure of wellfoundedness are deeply rooted
in common understandings of impossibilities. For example: it is probably not
unduly fanciful to claim that the song “There’s a hole in my bucket, dear Liza”
captures the important triviality that a process that eventually calls itself with
its original parameters will never terminate. The attraction of tricks like the
ship-in-a-bottle seems to depend on the illusion that two processes, each of
which (apparently) cannot run until it has successfully called the other, have
nevertheless been successfully run. A similar intuition is at work in the argument
sometimes used by radical feminists to argue that they can have no (nonsexist)
surnames, because if they try to take their mother’s surname instead of their
fathers, then they are merely taking their grandfather’s surname, and so on.
Similarly one hears it argued that since one cannot blame the person from whom
one catches a cold for being the agent of infection (for if one could, they in turn
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would be able to pass the blame on to whoever infected them, and the process
would be illfounded®) so one cannot blame anyone at all. This argument is used
by staff in STD clinics to help their patients overcome guilt feelings about their
afflictions.

The reader is invited to consider and discuss the following examples from
the philosophical literature.

1.

113

. most of those who believe in probability logic uphold the view that
the appraisal is arrived at by means of a principle of induction 7 which
ascribes probabilities to the induced hypothesis. But if they ascribe a
probability to this “principle of induction” in turn, the infinite regress
continues”.

Popper, op. cit. p 264

. In every judgement, which we can form concerning probability, as well

as concerning knowledge, we ought always to correct the first judgement,
deriv’d from the nature of the object, by another judgement, deriv’d from
the nature of the understanding. ’Tis certain a man of solid sense and
long eperience ought to have, and usually has, a greater assurance in his
opinions, than one who is foolish and ignorant, and that our sentiments
have different degrees of authority, ebven with ourselves, in proprtion to
the degrees of our reason and experience. In the man of the best sense
and longest experience, this authority is never entire; since even such-a-
one must be conscious of many errors in the past, and must still dread
the like for the future. Here then arises a new species of probability to
correct and regulate the first, and fix its just standard and proportion.
As demonstration is subject to the control of probability, so is probability
liable to a new correction by a reflex act of the mind, wherein the nature
of our understanding, and our reasoning from the first probability become
our subjects.

Having thus found in every probability, beside the original uncertainty
inherent in the subject, a new uncertainty deriv’d from the weakness of
that faculty, which judges, and having adjusted these two together, we are
oblig’d by our reason to add a new doubt deriv’d from the possibility of
error in the estimation we make of the truth and fidelity of our faculties.
This is a doubt, which immediately occurs to us, and of which, if we wou’d
closely pursue our reason, we cannot avoid giving a decision. But this
decision, tho’ it shou’d be favourable to our preceding judgement, being
founded only on probability, must weaken still further our first evidence,
and must itself be weaken’d by a fourth doubt of the same kind and so
ad infinitum; till at last there remain nothing of the original probability,
however great we may suppose it to have been, and however small the
diminution by every new uncertainty. No finite object can subsist under a

6Unless one can blame Eve!
"This is of course philosophical not mathematical induction!
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decrease repeated in infinitum; and even the vastest quantity, which can
enter into human imagination, must in this manner be reduc’d to nothing.

Hume: A treatise of human nature. book I part IV, sec 1, 5-6.

3. “ ... Volitions we postulated to be that which makes actions voluntary,
resolute [etc.] But ... a thinker may ratiocinate resolutely, or imagine
wickedly ... . Some mental processes then can, according to the the-

ory, issue from volitions. So what of the volitions themselves? Are they
voluntary or involuntary acts of mind? Clearly either answer leads to ab-
surdities. If I cannot help willing to pull the trigger, it would be absurd to
describe my pulling it as voluntary. But if my volition to pull the trigger
is voluntary, in the sense assumed by the theory, then it must issue from
a prior volition and from that another ad infinitum.

(Ryle The Concept of Mind pp 65-6.)

2.1.5 Sensitivity to set existence

We now return to structural induction and consider how the set formule for
which one can perform structural induction over a rectype depends on what
other assumptions one makes. We deduce an instance of structural induction
over a rectype by appealing to the fact that the rectype (of widgets, as it might
be) is the intersection of all things containing the founders and closed under
the constructors. So if the class of things that are F' contains the founders and
is closed under the constructors, then all widgets are F'. For this to work we
need to know that the extension (page 10) of F really exists. In this way we
see that the extent of what we can prove by induction is determined at least in
part by our set existence axioms. This will matter later on when we start doing
set theory.

2.1.6 Countably presented rectypes are countable

Mathematicians should be warned that logicians often use the word ‘countable’
to mean ‘countably infinite’. The symbol used for the cardinal number of count-
ably infinite sets is ‘Ng’.

The Prime powers trick

“Countably presented” is slang, but it this case we mean that the rectype has
countably many founders and countably many operations all of finite arity.

Theorem 5 Countably presented rectypes are countable.

Sketch of proof.

The key observation is that the set of finite sets of naturals and the set of
finite sequences of naturals are both countable. The function \z.X,c,2™ maps
finite sets of natural numbers 1-1 to natural numbers. (Make a note of this for
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later use in finding models of ZF without the axiom of infinity). We map finite
sequences of naturals to naturals by sending—for example—the tuple (1, 8,7, 3)
to 2111 . 38+ . 57+ . 73+1 ) This is the prime powers trick.

The elements of a finitely presented (indeed countably presented) rectype
can obviously be represented by finite sequences of symbols, and so the prime
powers trick is enough to show that every finitely presented rectype is countable.

|

A meal is often made of the fact that (the syntax of) every human language
is a rectype—unlike the syntax of any animal language—and that therefore
the repertory of possible expressions is infinite in a way that the repertory of
meaningful calls available to animals of other species is not. Quite how useful
this recursive structure is to those who wish to drive a wedge between human
language and animal language is not entirely clear, but it is immensely useful
when dealing with artificial languages, since it enables us to exploit structural
induction in proving facts about them.

We can enumerate the wifs® of a language, then sequences of wffs of a lan-
guage (which is to say, Gédel-proofs which we will meet on page 66). This en-
ables us to arithmetise proof theory and eventually to prove the incompleteness
theorem. Since this was first done by Gdédel with precisely this end in view, any
enumeration of formulae (or register machines or Turing machines as in chapter
6 or anything else for that matter) tends to be called Gédel numbering or
gnumbering for short: the ‘g’ is silent).

I shall say nothing at all at this stage about how big a rectype can be if it
is not countably presented.

The way to crystallise the information contained in theorem 5 is to develop
a nose for the difference between what one might call finite precision objects
and infinite precision objects. Members of finitely presented rectypes are finite
precision objects: one can specify them uniformly with only finitely many sym-
bols. In contrast the reals, for example, are infinite precision objects: there is no
way of uniformly notating reals using only finitely many symbols for each real.
There is a sort of converse to theorem 5: if a set is countable then there will be
a way of thinking of it (or at least there will be a notation for its members) as
a finitely presented rectype. This gives us a rule of thumb: if X is a set which
admits a uniform notation for its members where each member has a finite label
then X is countable, and conversely. This isn’t the definition of countable but
it is the most useful way to tell countable sets from uncountable.

EXERCISE 11 Which of the following sets are countable and which uncount-
able, using the above test? The set of

(i) permutations of IN that move only finitely many things;

(ii) permutations of IN of finite order;

(1ii) algebraic numbers;

(iv) partitions of IN into finitely many pieces;

8TLogicians’ slang, which T shall frequently lapse into. It’s an acronym: Well-Formed For-
mula
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(v) partitions of IN all of whose pieces are finite;
(vi) partitions of IN containing a cofinite piece.

It is often quite hard to provide explicit bijections between two things that
are the same size: a good example is the naturals and the rationals. For this
reason we often have recourse to the Schréoder-Bernstein theorem (theorem 3.1.1)
which says that for there to be a bijection between X and Y it is sufficient for
there to be an injection X — Y and an injection ¥ — X. And it is easy to
inject the rationals into IN and vice versa.

Cantor’s theorem

Although we won’t need this until later we may as well note at this stage that
there are precisely as many countable sequences of reals as there are reals. To
show there are as many countable sets of reals as reals one needs countable
choice (page 53).

EXERCISE 12 Find a bijection between IN x IN and IN. Use it to show that
there are precisely as many w sequences of reals (sequences indexed by IN) as
there are reals.

The set of finite subsets of IN is countable. In contrast the set of all subsets
is not. P(x) is the power set of z: {y:y C x}.
The following theorem is easy and of central importance.

Theorem 6 (Cantor’s theorem) There is no surjection from any set onto its
power set.

Proof: Let f be a map from X to P(X). We shall show that f is not onto. Let
C={zxe X :z¢ f(x)}. If fwere onto, we would have C' = f(a) for some
a € X. But then we can reason as follows. a € f(a) iff @ € C (since C' = f(a))
iff a € f(a) (by membership condition on C) whence a € C +— a ¢ C. [ |

Notice the constructive nature of this proof. Not only does it show that no
f: X = P(X) can be onto, it embodies an algorithm that for each f exhibits
a subset of X not in the range of f.

We noticed earlier that any binary relation £ on a set X corresponds to
a function X — P(X) and that R is extensional iff this function is injective.
An Ttalian logician called di Giorgi made the observation that any model of set
theory at all can be thought of as an injection i from a collection X into P(X):
simply associate with X the relation {(z,y) : € i(y)} to get a structure that
looks like a toy set-theoretic universe. So such maps are sometimes called ‘di
Giorgi maps’.

Suppose f were a bijection between X and P(X), and run the construction
of the “diagonal” set: {z € X : x ¢ f(x)}. What is this object doing in the di
Giorgi model? It is {z : z € x}. This object is the star in Russell’s paradox,
and this is how Russell discovered the paradox.
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If we rerun the above proof of Cantor’s theorem with ‘4’ for ‘f’ we discover
Russell’s paradox: try it. (Russell tried it, and that’s how he found the paradox)

2.1.7 Proofs

One last general point about rectypes that we should note is the idea of a proof
(that something is in a rectype). For the moment let us restrict attention to
rectypes of finite character

The idea is that if something turns out to be in a particular rectype then
there is a good finite reason for it, such as a construction of the object by
means of the operations the rectype is built with. Thus 6 € IN because of
{1,2,3,4,5,6}. More generally, if R is the engendering relation of the rectype,
then R“{z} is a proof that z is in the rectype: R“{x} contains everything that
needs to be checked to confirm z’s membership.

Perhaps a better way of putting this would be to say that {1,2,3,4,5,6}
is a manifestation of the natural-numberhood of 6, but these constructions are
increasingly coming to be called proofs. (Some communities use the word
‘certificate’ in contexts like this: a pair of factors is a certificate for the compos-
iteness of a number.) This might look rather like a loose usage of an old word,
but the circle will close when we show that formal concepts of proofs (at least
since Godel, as we shall see on page 66) have in fact been constructions of this
kind.

2.2 Languages

Important examples of rectypes for us in logic are languages and it is to these
that we now turn. An alphabet is a (usually but not invariably finite) set of
atomic symbols, like the alphabet a, b, ¢ ... . Typically written in the style:
{a,b,c}. A string or a word (or formula in most of the languages of interest to
us) is a (for these purposes) finite list (or sequence) of letters from an alphabet.
If ¥ is an alphabet, this set of all finite sequences from ¥ is often called ‘¥*’.
A Language is a set of words (or strings or formulse). Notice that this is an
entirely syntactic definition. The semantics will come later.

There is one family of languages we will not be concerned greatly with, but
which make a useful way in to languages we do need. These are the so-called
regular languages.

If this machine is started in the designated start state, and moved by inputs
from one state to another according to the labels on the arrows, we can see that
it will be in a state labelled by a smiley iff it has received an even number of 0’s
and an even number of 1’s. We say that this machine accepts strings having
an even number of 0s and an even number of 1’s and that it recognises the set
of strings having an even number of Os and and even number of 1’s. (This is a
common cause of confusion: the machine accepts strings, but it recognises sets
of strings.
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Figure 2.1: A finite-state machine

Machines that can be drawn in this style are finite state machines. All that
such a machine knows is which state it is in. It doesn’t know which state it was
in last, and it doesn’t know how often it has been in any given state. We say of
a set of strings that is recognised by one of these machines that it is a regular
language.

At this stage the only useful example of a regular language is the positional
notation for natural numbers to base n, for fixed n. Here is a finite state machine
that accepts strings of Os and 1s that start with a 1, and thereby recognises the
set of binary representations of member of INT.

This machine accepts any string of Os and 1s beginning with a 1. This set
of strings is the set of base-2 notations for natural numbers, and is thus a set of
numeral. (Remember to distinguish between a natural number and a notation
for it.)

The scowlie is not standard but I use it. The smilie isn’t standard either:
the official symbol is a pair of concentric circles.

It is now possible to see why regular languages are not going to be of much
use to us, for consider the set of strings of left-and-right brackets where every left
bracket is closed by a right bracket and there are no extra right brackets. (The
“matching brackets” language). Any machine that accepts strings of matching
brackets and accepts no other strings must be able to keep track of how many
left brackets have been opened, and this can get arbitrarily large, and therefore
larger than the number of states of any given machine.

In a way this is unfortunate, since any language that is going to admit
nontrivial semantics is certainly going to have at least the complexity of the
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Figure 2.2: A finite-state machine recognising numerals to base 2

matching-bracket language. (Those that might appear not to, like polish nota-
tion, have the same complexity in a less obvious manner).

Regular languages will have little further application in this text, but here
they have served to introduce us to machines, and ideas of accepting and recog-
nising which we will need in connection with Turing machines in chapter 6.
They do occur naturally though: it seems that for every natural language the
sound-strings that form permissible words of that language constitute a regular
language. It has to be admitted that the use of the word ‘language’ in this con-
nection is a bit question-begging: not all regular languages have any semantics.
The set of strings of Os and 1s starting with a 1 is an example of a regular lan-
guage with a natural semantics, but there are not many. The older terminology,
now obsolescent, speaks of regular events not regular languages.

Ambiguous parsing

Not surprisingly we are going to be interested only in languages which can be
used to say things. In practice this means languages that are rectypes—and not
even all of them. Unless the recursive datatype that is the language is in some
sense free (so that each object in it can be generated in only one way—Ilike IN)
some strings will turn up in more than one way. This means that one regards
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the formula not just as a string but as a string with extra structure that tells
us where the string comes from, such as a proof or certificate in the sense of
section 2.1.7.

To the recursions that generate the strings of which the language is composed
will correspond rules telling us how the meaning of an expression is built up from
the meaning of its parts.

Given that the meaning assigned to a string depends on the meaning assigned
to the things it is built up from, any string that can be generated in two ways
can be given two meanings:

The thing that terrified him was climbing up the drainpipe

This kind of ambiguity is a real pain for language users, and artificial lan-
guages are carefully designed not to exhibit it. This frees us from the need to
associate to each formula a proof or certificate, and thereby allows us to think
of a formula simply as a formula.

In chapters 4 and 5 we will use recursion on the engendering relations to
assign meaning to formulae of two families of languages called propositional
and predicate languages. For the moment we will merely set up the syntax of
these languages, and leave the recursive definition of semantics until later.

2.2.1 Propositional languages

An alphabet of propositional logic contains infinitely many variables also known
as propositional letters also known as literals; and connectives such as A,
V, =, <—, NAND and NOR; and finally bits of punctuation like ‘(’ and *)’.

To be specific let’s say that a propositional letter is one of the letters ‘p’, ‘¢’
or ‘r’ with primes attached (so that we have infinitely many of them). Notice
that this makes the set of propositional letters into a regular language over the
alphabet { ‘p’, ‘¢’, ‘v’ " }1)

A propositional language is a set of formula over this alphabet recursively
generated as follows:

1. a propositional letter is a formula;
2. If p and q are formula so are (p V q), (p — q) etc etc.
If P is a propositional alphabet, the propositional language over P will be

written L£(P).

2.2.2 Predicate languages

A predicate language is the richer kind of thing that contains formuls like
(Vz)(Vy)(Vz)(R(x,y) A R(y,z) — R(z,2)). To be rigorous about it we would
have to say something like the following:

1. A quantifier is V or 3;
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2. A variable is one of the letters ‘z’, ‘y’ or ‘2z’ with a number of primes
appended to it;

3. A predicate letter is an uppercase letter of the Roman alphabet. Recall
from page 15 the function called arity which takes a predicate letter to
the number of arguments it is supposed to have;?

4. A function letter is a lowercase letter of the Roman alphabet other than

‘x’, ‘y’ or ‘2’. Function letters have arities the way predicate letters do;
5. An atomic formula is a predicate letter followed by the appropriate number

(the arity of that predicate letter) of terms all enclosed within a pair of

parentheses and demarcated by commas—e.g. F(f(x),y,9(z));

6. A term is either (i) a variable or (ii) a function letter followed by the ap-
propriate number of terms enclosed in a set of parentheses and demarcated
by commas, as it might be ‘f(g(z),y)’;

7. A molecular formula is either (i) an atomic formula, or (ii) a boolean
combination of molecular formule or (iii) the result of hanging a quantifier-
with-a-variable in front of a molecular formula;

A function letter might have arity 0, in which case it is a constant symbol.
A predicate letter might have arity 0 in which case it is a propositional letter;

A negatomic formula is the negation of an atomic formula.

A quantifier Vz or 3z always comes equipped with brackets, thus: ‘(Vz)(...)’
The material between the second left and the second right bracket is said to be
within the scope of the quantifier. If (as in this case) the variable after the
quantifier is ‘z’, then every occurrence of ‘z’ within the scope is bound. An
occurrence that is not bound is free. Naturally we have the same idea of free
and bound variables in lambda calculus too.

There are various things I could have done differently here, while doing the
same kind of thing. One could alter the number of functions or their arity, or
have different predicates. Another example we will need later is the language of
set theory. We characterise it formally by saying that it is a language we would
say in or of predicate calculus with equality and one primitive binary predicate
letter ‘€’. This information is laid down in the signature. For example the
signature of set theory is: equality plus one binary predicate; the signature of
the language of first-order Peano arithmetic has slots for one unary function
symbol, one nullary function symbol (or constant), and equality. A signature
is something even more abstract than a set of predicate letters and function
letters. It’s what remains after we throw away the symbols but remember how
many of each variety you have. Cricket and baseball have the same signature.
Well, more or less! They can be described by giving different values to the same
set of parameters. Rings and Integral domains have the same signature.

90n page 15 arity was a quantity associated with an operation rather than with a piece
of syntax potentially denoting that operation. This is an example of use-mention confusion.
See the White Knight’s song in Through the Looking glass and what Alice found there.
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When your mail-order kitset arrives, with the pieces and instructions for
a build-your-own-algebraicly closed field, somewhere buried in the sawdust or
the polystyrene chips you have a piece of paper (the “manifest”) which in this
context is the signature. It tells you how many objects you have of each kind,
but it doesn’t tell you what to do with them. Instructions on what you do with
the objects come with the axioms (instructions for assembly)

2.2.3 Intersection-closed properties and Horn formulse

A rectype is the intersection of all sets containing certain founders and closed
under certain constructors.

The property of containing certain founders and being closed under certain
constructors—call it closed for the moment—has the feature that the intersec-
tion of a family of closed sets is also closed. So the intersection of all of them is
also closed.

A property which is preserved under intersection in this way is said to be
intersection-closed: a property of sets is intersection-closed iff the intersection
of any number of sets having that property also has that property. Intersection-
closed properties give rise to a notion of closure: If X is a set that lacks some
intersection-closed property F', then the intersection of all supersets of X that
do have F'is itself F', and is the least superset of X that is F', and is commonly
called the F'-closure of X.

Standard examples are: convex hull of a set of points in a vector space,
transitive closure of relations.

At first blush you might think that this is slightly more general than declaring
a rectype. Interestingly this is not so. It turns out that any intersection-closed
property F'(X) can be twisted into a form where it says that X is closed under
certain operations.

Let’s illustrate this by recalling the intersection-closed properties of transi-
tivity and symmetry from page 12.

(Veyz)(R(z,y) A R(y, z) = R(z, 2))
(Vay)(R(z,y) = R(y, r))

We can see that a relation is transitive iff it is closed under the operation
that accepts (z,y) and (y, z) and returns (z,z). It is symmetric iff it is closed
under the operation that flips ordered pairs around.

Notice now that these two definitions have a syntactic peculiarity: the stuff
inside the quantifiers is of the form

(A pi) = q
el

where the p; and ¢ are atomic (not even negatomic—just atomic). I may be
empty, and ¢ may be L. ‘L’ is the constant symbol constrained to evaluate
always to false: this matches its other use as the symbol denoting the bottom
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element of a poset. Formula like this are called Horn clauses. We will say
that a property F' of relations is captured by horn clauses if the assertion
that R has property F' is expressed by a formula which is a list of universal
quantifiers enclosing a body which is a horn clause whose atomic parts are frag-
ments like ‘R(z,y)’ which just glue together with R’s the variables mentioned
in the universal quantifiers.

To put it roughly:

REMARK 7 the following are equivalent for a property F:

F' is intersection-closed;
F is captured by horn clauses;

The extension (graph) of F' is a rectype.

Horn clauses are the syntactic manifestation of rectypes.

(Think about “X contains 0 and is closed under successor”; “R is a transitive
relation”, and contrast them with “R is a trichotomous relation”

[HOLE burble nonhorn nonmonotonicity. A horn clause corresponds to “if
you find this tuple in the set, and that tuple in the set, put in this tuple. Try to
think of a non-horn definition as partaking of the same absurdity that we find
in “if you don’t get this message, please ring me back”

The graph of a relation with a horn property can always be thought of as a
set of ordered pairs closed under some operation. |

We might note also in this connection that the projection of a convex set
in a vector space is likewise a convex set. The way in to this is to think
of convex figures in three dimensions. The shadow cast by a convex solid
figure is a convex plane figure. The set of convex subsets of E" is closed
under directed unions. (page 15) This is not an accident.

2.2.4 All wellfounded structures arise from rectypes?

All rectypes give rise to wellfounded relations: do all wellfounded relations arise
from rectypes? For most practical purposes the answer appears to be ‘yes’.
Counterexamples would be interesting, but no-one has ever fomulated the ques-
tion precisely enough for us to know what we’d be looking for. What do we
mean by ‘arise’; exactly?
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Chapter 3

Partially ordered sets

3.1 Lattice fixed point theorems

A fixed point for a function f is an argument z such that f(z) = x. This is an
important concept because many useful mathematical facts can be expressed by
assertions that say that certain functions have fixed points. For example, the
equation p(z) = 0 has a solution iff the function Az.(p(z) — z) has a fixed point.
This gives us a motive to seek methods for showing that functions have fixed
points: fixed point theorems are useful in the search for solutions to equations.

3.1.1 The Tarski-Knaster theorem

Theorem 8 The Tarski-Knaster theorem
Let (X, <) be a complete lattice and f an order-preserving map (X, <) —
(X,<). Then f has a fized point.

Proof:

Set A ={z: f(z) < z} and a = A A. (A is nonempty because it must
contain \/ X). Since f is order-preserving, we can say that if f(z) < z then
f2(z) < f(z) so f(a) is also a lower bound for A as follows. If z € A we have
f(z) < x whence f?(z) < f(z) so f(z) € A and a < f(z). But f(z) < z so
f(a) < z as desired. But a was the greatest lower bound so f(a) < a and a € A.
But then f(a) € a since f“A C A, and f(a) > a since a is the greatest lower
bound.

|

This proof of theorem 8 shows not only that increasing functions have fixed
points but that they have least fixed points. This gives us the existence of
inductively defined sets because the operation of taking a set and adding to it
the result of applying all the constructors once to all its members is increasing
(with respect to C). The above definition of the element a echoes precisely the
declaration of IN as an intersection of a family of sets. Compare A{z : f(z) < z}
with N{X : (S“X U {0}) C X}.

45
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EXERCISE 13 Prove that every monotone function on a complete lattice has
a greatest fixed point.

A least fixed point (think: IN) has an induction principle, and a greatest
fixed point has a co-induction principle. What might this co-induction principle
be? Something will belong to a coinductive dataype as long as there isn’t a
good finite reason for it not to.

Let’s have a couple of applications.

Theorem 9 Schréder-Bernstein

A4

PAN

Figure 3.1: The Schroder-Bernstein theorem

The function AX.(A \ ¢“(B\ f“X)) is a monotone map from P(A) into
itself. AX.f“X is monotone; complementation in B is antimonotone; A\Y.g“Y is
monotone, and complementation in A is antimonotone. the composition of two
antimonotone functions is antimonotone, so the function AX.(A\ g“(B\ f“X))
is a monotone map from P(A) into itself as claimed.

If now X is a fixed point for AX.(A \ ¢g“(B \ f“X)) we find that f|X U
(g (A \ X) is a bijection between A and B. [ |

Further applications include the existence of transitive closures of relations.

Consider the complete lattice P(X x X) and let f be the function AR.RUR?2.
Any fixed point for this function is a transitive relation. If NV is a binary relation
on X then the least fixed point of AR.R U R? that is above N is the transitive
closure of N. Is there a fixed point above N7 Yes, because the the upper set
of points above any given point in a complete lattice is also a complete lattice
and we can use theorem 8 again.

3.1.2 Witt’s theorem
We say f: X — X is inflationary if (Vz € X)(z < f(z)).
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Theorem 10 Every inflationary function from a chain-complete poset into it-
self has arbitrarily late fized points.

Proof: Let (X, <) be a chain complete poset, f an inflationary function X — X,
and z a member of X. We will show that f has a fixed point above z.

The key device is the inductively defined set of things obtainable from =z
by repeatedly applying f and taking sups of chains—the smallest subset of X
containing = and closed under f and sups of chains. Let us call this set C(z).
Our weapon will be induction.

We will show that C'(z) is always a chain. Since it is closed under sups of
chains it must therefore have a top element and that element will be a fixed
point.

Let us say y € C(z) is normal if (Vz € C(2))(2 <y = f(2) <y). We prove
by induction that if y is normal then (Vz € C(z))(z <y V f(y) < z). That is
to say, we show that—for all normal y—{z € C(z) : 2 <y V f(y) < z} contains
z and is closed under f and sups of chains and is therefore a superset of C(x).
Let’s deal with these in turn.

1. (Contains z) z € {z € C(z) : z <y V f(y) < z} because z < y. (z <y
because z is the smallest thing in C'(z)—by induction! The set of things
> x contains z, is closed under f and sups of chains and is therefore a
superset of C'(z).

2. (Closed under f). If z € {z € C(z) : 2 <y V f(y) < z} then either

(a) z < y in which case f(z) < y by normality of y and f(z) € {z €
C(x):2<yV f(y) <z} or

(b) z =y in which case f(y) < f(z)so f(z) e {z € C(x): 2 <yV f(y) <
z} or

(¢) f(y) < z in which case f(y) < f(z) (f is inflationary) and f(z) €
{z€eCx): 2<yV fly) <z}

3. (Closed under sups of chains). Let S C {z € C(z) : z < yV f(y) < z} bea
chain. If (Vz € S)(z < y) then sup(S) < y. On the other hand if there is
z € Ss.t. z £y, we have f(y) < z (by normality of y) so sup(S) > f(y)
and sup(S) € {ze€ C(z): z<yV f(y) < z}.

Next we show that everything in C(z) is normal. Naturally we do this by
induction: the set of normal elements of C(z) will contain 2 and be closed under
f and sups of chains.

1. (contains z). Vacuously!

2. (closed under f). Suppose y € {w € C(z) : (Vz € C(z))(z < w — f(z) <
w}. We will show (Vz € C(z))(z < f(y) = f(2) < f(y)). So assume
z < f(y). This gives z < y by normality of y. If z = y we certainly have
f(2) < f(y) as desired, and if z < y we have f(z) <y < f(y).
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(closed under sups of chains). Suppose S C {w € C(z) : (Vz € C(x))(z <
w — f(z) < w)}is a chain. If z < sup(S) we can’t have (Vw € S)(z >
f(w)) for otherwise (Yw € S)(z > w) (by transitivity and inflationarity
of f) so for at least one w € S we have z < w. If z < w we have
f(z) <w < sup(S) since w is normal. If z = w then w is not the greatest
element of S, so in S there is w' > w and then f(z) < w' < sup(S) by
normality of w'.

If y and z are two things in C(z) we have z < y V f(y) < z by normality
of y, so the second disjunct implies y < z, whence z < yVy < z. So C(z) is
a chain as promised, and its sup is the fixed point above x whose coming was
foretold.

3.1.3 Exercises on Fixed Points

1.

2.

Show that the fixed point of theorem 8 is <x-minimal.

Let (A, <) and (B, <) be total orderings with (A, <) isomorphic to an
initial segment of (B, <) and (B, <) isomorphic to a terminal segment of
(A, <). Show that (A4, <) and (B, <) are isomorphic.

You used an analogue of the function in the proof of the Schroder-Bernstein
theorem. What can you say about the set of its fixed points?

(The Gale-Stewart theorem)

Let X be an arbitrary set. [X]<% is the set of finite sequences of members
of X. Let G be a subset of [X]<¥ closed under shortening (i.e., initial
segments of sequences in G are also in G.) There is a map v defined on
the endpoints of G (sequences in G with no proper end-extensions in G)
taking values in the set {I,II}.

Players I and II play a game by picking elements of X alternately, with
I playing first, with their choices constrained so that at each finite stage
they have built a finite sequence in G.

If they reach an endpoint of G the game is over, and v tells them who has
won. If the game goes on for ever, IT wins.

Provide a formal notion of winning strategy for games of this sort. Use
Witt’s theorem to prove that one or the other player must have a winning
strategy in your sense.

What might the wellfounded part of a binary relation be? Use one of the
fixed point theorems to show that your definition is legitimate.

(Maths tripos Part IT exam 2000)

(i) State and prove the Tarski-Knaster fixed-point theorem for complete
lattices.
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(ii) Let X and Y be sets and f: X — Y and g : Y — X be injections. By
considering F' : P(X) — P(X) defined by

F(A) = X\ g“Y \ f4X)

or otherwise, show that there is a bijection h: X — Y.

Suppose U is a set equipped with a group ¥ of permutations. We say
that a map s : X — Y is piecewise—X. just when there is a finite partition
X=XjU...UX, and 01 ...0, € ¥ so that s(z) = o;(z) for z € X;. Let
X and Y be subsetsof Y, and f: X =Y and g: Y — X be piecewise—X
injections. Show that there is a piecewise—X bijection h: X — Y.

If (P,<p) and (Q, <g) are two posets with order-preserving injections
f:P— Qand g: @ — P, must there be an isomorphism? Prove or give
a counterexample.

3.2 Continuity

Notice that neither theorem 8 nor theorem 10 make any assumptions about the
continuity of the functions they produce fixed points for. To appreciate the
significance of this point, attempt the following exercise.

EXERCISE 14 Let (X,<x) be a complete partial order and f a monotone
function (X, <x) = (X, <x). Show that {x : x = f(z)} is a complete lattice.

One naturally spots immediately that any set F' of fixed points for f has a
sup in X. Equally naturally one expects next to able to prove that this fixed
point is itself fixed. Why should one expect this? There are two reasons, both
of which bear examination.

(i) One might expect that the subposet of fixed points for f inherits not
only the ordering from (X, <x) but inherits the \/ and A as well. This is
a natural thing to expect because in most cases where one has two algebras,
where the carrier set of the second is a subset of the carrier set of the first, the
operations of the second are restrictions of the operations of the first: subgroups
of groups have the same multiplication as the group of which they are subgroups;
multiplication of rationals is a restriction of multiplication of the reals, and so
on.

(ii) There are various natural concepts of continuity which one might be
unconsciously invoking, and they will ensure that the sup of X in the poset of
fixed points is the same as its sup in (X, <x). These ideas of continuity bear
examination in turn.

The roots of all ideas of continuity lie in the real line. Topology arose from
an endeavour to develop the notion of a continuous function from the reals to
the reals for use elsewhere. It is a powerful development because it remains
useful even when the domain and range of the putatively continuous functions
lack order structure. In the present context we still have order structure and
we can develop the same original ideas in a different direction.
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Let (X, <x) be a complete lattice. f: X — X can be made to act on P(X)
in two ways. Given Y C X, one can take the sup and then apply f, or one
can apply f setwise to Y, and take the sup of the values. Are the two results
the same? If they are, we say f is continuous. Notice that if X is R then
this agrees with the usual definition of continuous function £ — R, at least for
nondecreasing functions.

So f: X — X is continuous if (VX' C X)(\/(f“X') = f(V(X"))). That is
to say, if the following diagram commutes.

PIX) Az f“x P(X)
sup sup
X f X

If we write X for the set of subsets of X that are ranges of increasing!
X-valued sequences of length a. We then say that f is a-continuous if the
next diagram commutes.

o Ax.f“x xa
sup sup
X ! X

Of course you haven’t ever had to worry about a-continuity for any « other
than w because, as you know, whenever a is a least upper bound of a set of reals
X then there is an increasing sequence xg, 1 ... indexed by the naturals whose
limit is a. (In fact this uses dependent choices see page 27.) So the only kind
of continuity of functions 8 — R that matters is w-continuity, where w is the
order type of the naturals in their natural order. So you wouldn’t have learned
a general concept of a-continuity from the reals!

In Algebra one has operations like AA.{ab : a,b € A} which takes a set of
group elements to another set of group elements. This too is w-continuous. It
seems that it is w-continuous because it has finite character. However even some
operations whose character is less obviously finite are w-continuous. Consider
the function that sends a set to the set of all its finite subsets. Even this is
w-continuous: if a; C as C a3z C ... and z is a finite subset of a; Uas UasU. ..
then it can only meet finitely many a;11 \ a; and so it is already a subset of
some a;. So Az.(set of finite subsets of z) is w-continuous. In contrast Az.(set

1We need this condition because without it any S-sequence with 8 < a could be padded out
to an a-sequence, with the effect that a-continuity of a function f would imply S-continuity
for all 8 < a.
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of countable subsets of x), is not! Think about how to apply this reasoning to
the set of countable subsets of a set. If you know about ordinals already, you
may ask yourself: what can we deduce about an ordinal « if we are told that
the function Az.(set of countable subsets of x) is a-continuous? We will return
to this in chapter 8.

Finally P is an example of a function that is monotone but not a-continuous
for any a.

Given that many natural functions are continuous in one sense or another,
it is natural to wonder if one can weaken the requirement that the domain and
range should be a continuous lattice if it is only continuous functions one is after
fixed point for. An intuition that is very appealing in this context is the idea of
iterating a continuous function and looking at the limit of the points obtained.
Is the sup of {z, f(z), f2(x) ... f*(x)...} afixed point for f, if f is continuous?
It will be—as long as it exists! What condition can we put on the lattice that
will ensure that this limit exists? Well, if f is monotone increasing, then the set
{f™(z) : x € IN} will be a chain, so all that is necessary is to suppose that the
lattice has sups of all chains of length w: a weaker condition than existence of
sups of all subsets.

This is susceptible of refinements which we will not pursue here: arguments
like this will enable us to show that if a poset has sups of all chains of length a,
then if f is a-continuous, then f will have a fixed point.

In fact, not only do we not need the domain and range to be a complete
lattice, we don’t need it to be a lattice at all. The condition on existence of
sups of chains that does the business for us doesn’t imply existence of sups of
two incomparable elements. Our next example illustrates this.

Let us write “Z — Z” for the set of partial maps from the integers into itself.
(The funny arrow isn’t defective—it really is meant to have only one fletch, and
its WTEX symbol is \rightharpoondown. X — Y is the set of partial functions
from X to Y.)

Identify the maps with their graphs and partially order Z — Z by set inclu-
sion. This makes it a chain-complete poset under C. It inherits its structure
from the complete lattice (P(Z x Z), C)—of which it is a substructure in terms
of the jargon on page 10. Now consider the map

metafact: A\f.An.if n =0 then 1 elsenx f(n —1)

Notice that metafact is w-continuous, and that the poset of partial maps
7. — 7 partially ordered by inclusion has sups of w-chains. So metafact will
have a fixed point.

Check for yourself that any fixed point for this satisfies the recursion that
characterises the factorial function. In fact there are lots of fixed points for
metafact, but the one we are after is the least one, which we can obtain by
iteration in the obvious way. The least fixed point is the only fixed point that
contains no information beyond that obtainable from the recursion. The recur-
sion only tells us about what to do to natural numbers, so the least fixed point
is undefined everywhere else.
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This illustrates how the extra generality (of chain-complete posets over com-
plete lattices) matters. The set of partial maps Z — Z partially ordered by
inclusion is an important object but it isn’t a complete lattice (two functions
which disagree on even one argument have no common upper bound) so we
cannot use the Tarski-Knaster theorem to show that things like metafact have
fixed point.

3.2.1 Exercises on lattices and posets

1. Let O(X) be the lattice of open sets of a topological space X. Show
that it is a complete lattice under inclusion. Is it distributive? There
are two Infinitary distributive laws: z AV A = \/{x Aa : a € A} and
xVANA=A{zVa:ae A}. Which of these does it satisfy?

Consider the map
F:0X)—>0X); FU)=int(X\int(X\01))

where int(A) is the interior of A C X. Show that F is order-preserving.
Is F' continuous?

2. Consider the following functions F': P(IN) — P(IN).
(i) F(A)={1}u{2n:ne€ A}U{3n:n € A}.
(il) F(A) =AU{2n:n ¢ A}.
(iii) F(A) = {2} U{ab:a,b e A}.
(iv) F(A) ={n:3m € An < m}.
(v) F(A) =N\ A.
In each case determine whether or not F' is w-continuous.
In case F' is w-continuous identify the least fixed point of f.
In the cases when F' is not w-continuous determine whether or not F' has
a fixed point.

3. The proof of theorem 3.1.1 uses the function
F:PX) = P(X); F(A)=X\g“Y\f44),
where f : X — Y and g : Y — X are injections. Is this function w-
continuous?
3.3 Zorn’s lemma
Zorn’s lemma is one of a collection of interdeducible assertions.

Zorn’s lemma: Every poset in which every chain has an
upper bound has a maximal element.

Do not worry too much about whether or not it might be true.
We can use it to prove various convenient generalities, like these:
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. Every vector space has a basis.
. Every set can be wellordered.

. Given any two sets there is a injection from one into the other.

=W NN =

. The Axiom of Choice: If X is a set of nonempty sets, there is a function
f: X > UX st (Vze X)(f(z) € z).

. Countable choice: like the previous item but X is required to be countable.
. Every surjection has a right inverse.
. Tikhonov’s theorem: a product of compact spaces is compact.

. Jordan-Konig. (see page 166)

© 00 N O Ut

. (Nilson-Schreier) Every subgroup of a free group is free.
10. Every connected graph has a spanning tree.
EXERCISE 15 Deduce items 1, 2, 3, 4, 6 and 10 from Zorn’s lemma.

5 has no converse, and it is open whether or not 9 has. All the others do,
but mostly they are beyond the scope of this book. Theorem 10 was proved
specifically to deduce Zorn’s lemma from the axiom of choice.?

EXERCISE 16 Use Witt’s theorem and the axiom of choice to prove that every
chain-complete poset has a maximal element.

Show that for any poset (X,<x) the collection of chains in it, partially
ordered by C, is a chain-complete poset.

Then deduce Zorn’s lemma from this last assertion.

(You may need the hint that this generalises the construction of the reals as
the completion of the rationals.)

EXERCISE 17 Prove the following implications:
7= 4;

2= 4;

10 — 4;

3.3.1 Exercises on Zorn’s Lemma

1. Recall that one partial order <, on a set P extends the partial order <;
just when a <; b implies a <5 b for all a, b in P. Use Zorn’s Lemma to
show that every partial order can be extended to a total order. This is
the Order Extension Principle.

2. Use Zorn’s Lemma to prove that every subspace U < V of a vector space
has a complementary subspace (that is, thereis W < V with V. =U®W).

?Deducing Zorn from AC was a well-known fiddly task—and in some ways remains so. I
learned the idea of using Witt’s theorem for it from my colleague Peter Johnstone.
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3.4 Boolean Algebras

Recall that a boolean algebra is a distributive complemented lattice.

Notice that all the axioms for boolean algebras are horn. So we can talk
about the boolean algebra generated by a set of elements, and we can talk about
products and substructures of boolean algebras. Indeed they are a special kind
of Horn formula, being of the form (V; .. . x,) hung on the front of a conjunction
of a lot of equations. Theories axiomatised by universal closures of conjunctions
of equations are said to be algebraic. (Look ahead to page 82 if you don’t
understand this and are in a hurry to find out).

The most natural examples of boolean algebras are a power set algebras: the
set of all subsets of a given set, partially ordered by set inclusion, with union,
intersection and complement.

Filters

A filter in a boolean algebra is a subset F' of the domain which is closed under
> and A. i.e. it satisfies the two conditions:

reEFNz<y—y€eF

and
z,yeF >xNyeF

Notice that these conditions are horn, so an intersection of filters is a filter
and a directed (page 15) limit of filters is a filter. The fact that it is horn also
means we can talk about the filter generated by a set, which is of course the
smallest filter that is a superset of the set given. A filter in the power set algebra
(P(X),C) is said to be a filter on X. We should think of a filter on X as a
concept of largeness (of subsets of X). This seems reasonable if we reflect on
the easiest examples: the cofinite subsets of IN (these are the sets X such that
IN'\ X is finite) are clearly large in some sense. This motivates two other clauses
which we almost always assume and which it is easy to forget.

1. Proper filters. According to the definition of filter, the whole algebra is a
filter. However it is not a proper filter. All other filters are proper. If the
filter generated by a set of elements is proper, we say the set is a filter
base.

2. Nonprincipal filters. There are pathological filters that do not accommo-
date the “largeness” intuition. If b is any element of a boolean algebra B,
then {b' € B : V' > b} is a filter in B. It is the principal filter generated
by b. We will think of principal filters as pathological and will not be
interested in them. The remaining filters are nonprincipal: like the filter
of cofinite subsets on IN we saw earlier.

EXERCISE 18 Check that the filters in a fixed boolean algebra form a complete
poset; the proper filters form a chain-complete poset.
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Let F be a filter in a boolean algebra B. {-y :y € F'} is an ideal. Indeed
it is the dual ideal to F’

Ideals in Boolean algebras are so-called because they correspond to ideals in
Boolean rings. Boolean rings?

EXERCISE 19 A Boolean ring is a ring with a 1 such that for all elements x,
2

x? =x.
1. Describe operators and equations which show that the theory of Boolean
rings s an algebraic theory.

2. Show that a Boolean ring satisfies the equations v + x = 0 and xy = yz.
Deduce (by considering additive groups) that every finite Boolean ring has
order a power of 2.

3. Show that a Boolean algebra becomes a Boolean ring with multiplication
given by A and addition defined by x +y = (x A —y) V (y A —x).

4. Conversely find definitions of 0, 1, V. A and — in terms of +, 0, 1 etc so
that a Boolean ring becomes a Boolean algebra.

5. Which Boolean rings are integral domains?

DEFINITION 11 A filter F satisfying any of the conditions below is said to
be an ultrafilter. The dual ideal is o prime ideal.

1. F is C-mazimal among proper filters.
2. VxeB)(ze FV-xeF).

3. Foralla, b € B, if (aVb) € F then either a € F orb € F. (F is prime.)
EXERCISE 20 Prove that the definitions of definition 11 are equivalent

There are natural examples of filters on sets: we saw earlier the filter of
cofinite subsets of IN, and indeed for any infinite set X the collection of cofinite
subsets of X is a filter on X. Unfortunately the only natural examples of
ultrafilters are trivial. If z is any element of a set X, then {X' C X : z € X'} is
a principal ultrafilter on X, and unless we assume something like the axiom of
choice this is the only kind of ultrafilter whose existence can be demonstrated.

We tend to use CALLIGRAPHIC font capitals for variables ranging over
ultrafilters.

If we do assume the axiom of choice we can prove that there are lots of
ultrafilters:

Theorem 12 (The Prime ideal theorem) Every boolean algebra has an ultrafil-
ter.
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Proof:

Consider the set of filters in a boolean algebra B. They are partially ordered
(by C, as we have remarked earlier in exercise 18); also any C-chain of filters
has an upper bound (which is simply the union of them all) so the assumptions
of Zorn’s lemma are satisfied. Therefore there are maximal filters. These are
ultra, by exercise 20.

|

Since proving that there are ultrafilters is the same as proving that there are
maximal (“prime”) ideals, the name should not cause puzzlement: it’s simply a
question of which terms you propose to think in.

Since, as we noted on p. 15 upper sets in (complete) posets are (complete)
posets, we can even prove the apparently stronger assertion that every filter in a
boolean algebra B can be extended to an ultrafilter. It isn’t in fact any stronger
because if we seek an ultrafilter extending a given filter F' we form the quotient
algebra B/F, use theorem 12 to find an ultrafilter, and then form the set of
all elements of B that got sent to the ultrafilter in the quotient. This set is an
ultrafilter extending F'.

In fact by being careful in the choice of a chain-complete poset we can even
prove:

EXERCISE 21 If B is a boolean algebra with nonprincipal filters then it has a
nonprincipal ultrafilter.

Algebras have products and quotients. A homomorphism from A4 to B is a
map h such that if a tuple @ of elements of A stands in some (atomic) relation

-

R in A, then the tuple h(a) stands in the same relation R in B. In fact there
is usually more one can say about homomorphisms than this. In the case of
boolean algebras (which are the only algebras we are going to be interested
in here) any filter gives rise to a homomorphism. As noted earlier, a filter
corresponds to a notion of largeness. Thus if we have a filter F' in a boolean
algebra B it is natural to think of b and b’ in B being similar if their symmetric
difference bAb' is small, which is to say, its complement is in the filter. Thus we
have b ~p b’ iff the complement of (bAb') € F.

EXERCISE 22 .
(i) Check that ~p is the same as (3c € F)(cAb=cAV);
(11) Check that ~p is a congruence relation for the boolean operations;
(11i) Prove that the function sending elements of B to their equivalence classes
is a boolean algebra homomorphism.

DEFINITION 13 The algebra whose elements are equivalence classes under
~p is the quotient algebra modulo F. The kernel of a homomorphism of
boolean algebras is the set of elements sent to 0.

This enables us to prove the Stone Representation theorem. A representation
theorem you already know is the representation theorem for groups: every group
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is (isomorphic to) a group of permutations of a set. The most obvious examples
of boolean algebras all have sets as their elements and set inclusion (z C y) as
their partial order. Not all do: quotient algebras typically don’t. The Stone
Representation theorem is the assertion that nevertheless

Theorem 14 (Stone’s Representation Theorem)
Every boolean algebra is isomorphic to a boolean algebra whose elements are
sets, whose partial order is C, and whose V and A are U and N.

Proof:

The hard part is to find the isomorphic algebra; the rest is easy. Given B
construct B’ as follows. Send each b € B to {U/ : b € U} (the set of all ultrafilters
in B containing b). B’ will be the image of B in this map. Obviously if b < ¢
then any ultrafilter containing b will contain ¢ but not vice versa unless ¢ < b.
If b is strictly below ¢ then consider the principal filter generated by ¢ A —b.
Extend this to an ultrafilter by theorem 12. This ultrafilter will contain ¢ but
not b. Thusb<c+—{U:belU} C{U:celU}.

|

Theorems 12 and 14 are in fact equivalent. Although we used Zorn to prove
them there is no converse. Nevertheless there is a list of natural assertions
equivalent to them, though it is not as long as the list of equivalents of AC.
The most interesting item is probably: a product of compact Hausdorff spaces
is compact Hausdorff, but that is hard! (See Johnstone: Stone Spaces)

Atomic and Atomless boolean algebras

An atom in a boolean algebra is a minimal nonzero element. A boolean algebra
is atomic if every nonzero element is above an atom. Power set algebras are of
course atomic—the atoms are the singletons.

A rich source of atomless boolean algebras are things of the form RO(T), the
algebra of regular open sets? of a topological space 7. The poset of open
sets is a Heyting algebra. Atomless boolean algebras will reappear in section
5.6.

3.5 Antimonotonic functions

A function f from a poset into itself is antimonotonic iff (Vz,y)(z < y —
1) < f(@)

Theorem 8 tells us nothing about fixed points for antimonotonic functions,
but sometimes one can get results by doing clever ad hoc things. A fact that
is sometimes useful is that the composition of two antimonotonic functions is
monotonic, and every fixed point for f is also a fixed point for f2. Look also at
question 3.1.3.2.

3An open set is regular open if it is the interior of its closure.
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Fixed points for antimonotonic functions—or at least things with that kind
of flavour—crop up inconveniently all over the place. Natural examples in math-
ematics include finding roots of polynomials. After all 22 — 2 = 0 has a solution
iff the antimonotonic function Az.(2/x) has a fixed point. But in this case there
are other techniques we can use, since the poset of reals has extra structure.
Complementation in Boolean algebras, [ in the poset of all sets are both an-
timonotonic. Further interesting examples are to be found in linguistics and
biology. Two creatures of the same species are supposed to be able to mate and
produce viable offspring. This gives rise to a possible definition of a(n extension
of a) species as a fixed point for the operation

AX {y : (Vz € X)(z and y can be mated to produce viable offspring) }

(We disregard gender for the moment!) The only trouble is: this operation
is antimonotonic with respect to C! Let M and F be two sets and R C M X
F. Then the function m = AX C M{y € F : (Vo € X)(R(z,y))} is an
antimonotone function from P(M) — P(F), and similarly f = AX C F{y €
M : (Vz € X)(R(y,z))} is an antimonotone function from P(F) — P(M). Now
f om is a monotone map P(F) — P(F) and m o f is a monotone map from
P(M) — P(M). fom and mo f have fixed points by theorem 8. If we take M
and F' to be the set of (genotypes of) male and female fruit flies respectively, and
R(z,y) to be the binary relation “z and y will produce viable offspring when
mated” we find that fixed points for the compositions (either way) of these two
maps give rise to things like species of fruit flies. Is there any reason to suppose
that every member of M U F' belongs to a fixed point? You may enjoy working
out the details. *

There are equally important examples from other areas too. In phonetics
there is the concept of allophone. Two sounds are allophones for a language
if the language makes no use of the difference between them. The voiced and
unvoiced th sounds as in pith and wither are distinct for native speakers of
English in that they can hear that these two sounds are distinct. However they
are equivalent in the sense that there is no pair of English words which differ
only in that one has a voiced th where the other has an unvoiced th.® (They
are not equivalent in this sense in Arabic, for example). There are other pairs
of sounds in English that are indistinguishable in this sense, but they are less
striking: front and back ‘1’s, front and back ‘k’s for example. I'm not sure
about the sounds sh and zh (as in ‘pleasure’) for example: I know of no pair
of English words that differ only in that one has ‘sh’ where the other has ‘zh’.
Let’s suppose for the sake of argument that there is no such pair and that these
two sounds are indistinguishable in the same sense as the voiced and unvoiced
‘th’.

But even if both these pairs are indistinguishable in that sense, it doesn’t
imply that they are as it were jointly indistinguishable: there might be two

4A probably rather important point that it is hard to see how to make allowances for is
the fact that realistically R3 is very nearly a subset of R. ...

5Well, very nearly anyway: the only counterexamples to this claim are contrived or obscure:
loathe/loth, thy/thigh and thou (as in ‘you’)/‘thou’ (as in ‘Morrie thou’).
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words that differ in that where one has a voiced ‘th’ and a voiced ‘sh’ the other
has the two unvoiced sounds. What we want is a notion of equivalence of tuples
of sounds. That equivalence relation will be a fixed point for an antimonotonic
operation.

Biology provides us with an important example with the same logical struc-
ture: the notion of phenotypic equivalence of two alleles at a locus: if when we
swap one for the other it makes no difference to the resulting genotype, we say
they are phenotypically equivalent. But if A and a are phenotypically equiva-
lent® at one locus and B and b are phenotypically equivalent at another, can
we simultaneously swap a for A and b for B and still not make any difference
to the phenotype?

We will revisit these themes briefly in section 4.2.

3.6 Exercises

EXERCISE 23 Why do we need ultrafilters? Why can’t we send b to the set of
filters containing b?

EXERCISE 24 Let X be an infinite set. Observe that the filter of cofinite
subsets of X is a subset of every nonprincipal ultrafilter on X. Show that it is
in fact the intersection of all nonprincipal ultrafilters on X

EXERCISE 25 .

1. If a filter is ultra the corresponding quotient is the canonical two-valued
boolean algebra {0,1}.

2. IfU is a nonprincipal ultrafilter in P(I) then it contains all cofinite subsets
of I. Deduce that if X is finite all filters in P(X) are principal.

6There is a convention in the biology literature of using an upper case letter and the
corresponding lower case letter to denote alleles at a locus, when we are considering only two
alleles.



60

CHAPTER 3. PARTIALLY ORDERED SETS



Chapter 4

Propositional Calculus

So far I have been extremely careful not to say anything about languages that
depends in any way on semantics. We are now going to introduce ourselves to
two notions in Logic that cannot, without perversity, be approached without
semantics. They are theory—which is a kind of language, and a logic—which
is a kind of theory.

If P is a propositional alphabet then £(P) is to be the language over P:
the set of all formulee like p; V p2, p3 A p4 ete. all of whose literals come from
P—as in section 2.2.1.

A theory is a set of formula closed under deduction, and members of this
set are said to be theorems of the theory. What is deduction? This is where
semantics enters. Rules of deduction are functions from tuples-of-formulae to
formule that preserve something, usually (and in the course of this book exclu-
sively) truth.

But what is truth of a formula? A formula is a piece of syntax. It may
be long or short, or illformed or wellformed. it can be true or false only w.r.t.
an interpretation. Interpretations in the propositional calculus are simply rows
from the things you may know and love as truth-tables: they are functions
from literals to truth-values, to {true, false}. Each row in a truth-table is an
interpretation of the formula.

While we are about it, a tautology is a formula that is truth-table valid:
true under all interpretations.!

So a theory is a set of formula true in an interpretation or in a number of
interpretations. If deductions are to be things that preserve truth, and truth
is always truth-in-one-or-more-interpretations, then a theory will be a set of
formulaz closed under deduction, as we wanted at the outset.

Here is an example of a propositional theory. We might call it the theory of
adding two eight-bit words (with overflow). It has 24 propositional letters, po

IThis word is routinely misused. The other day my wife threatened to buy me a new
pair of trousers so I said “I’d rather have the money instead” “That’s a tautology” she said,
thinking about the use of both ‘rather’ and ‘instead’. She was wrong: it’s not a tautology, it’s
a pleonasm.

61
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to p7, ps to p15 and p1g to po3 and axioms to say that pig to po3 represents the
output of an addition if py to p; and pg to py5 represent two words of input.
true is 1 and false is 0, so it contains things like ((po A ps) = —p16) (co’s an
odd plus an odd is an even!)

b7 DPe DPs D4 D3 D2 D1 Do
+ D15 P4 P13 P12 P11 Po P9 P8
= P23 P22 P21 P20 P19 Pis Pir  Pi6

A Logic is a theory closed under substitution.

Before I tell you what substitution is, let’s motivate it. The theory of adding
two eight-bit words contains ((pg A pg) — —p1g) but not ((p1 A pg) — —p1g) for
example. It doesn’t treat all propositional letters the same. This is because it is
a description of a particular state of affairs rather than a general constraint on
what sort of states of affairs are possible A set of formula that encapsulates a
general constraint must make the same assertions about all propositional letters,
must be impervious to differences between them and must be invariant under
permutations that act on them. (Rather like the way in which—say—moral
truths are invariant under permutations of moral agents: if it’s wrong for me it’s
wrong for you. This is the categorical imperative?). You should make a mental
note here to understand that this is why logics are closed under substitution.
It’s an invariance property.>

Now let’s be formal about it. A substitution is a (finite)* map from vari-
ables to formulae (in the propositional case) or (in the predicate case) from
variables to terms or from predicate letters to formule with the appropriate
number of free variables. If L is a logic and ¢ is a substitution then the result
of applying ¢ to any formula in L must also be in L. T am going to assume that
you know what I mean by applying a substitution (which is a function defined
on variables) to a formula. We will use the specific notation ‘A[¢/1]’ for the
result of replacing in A all occurences of 1) by ¢.

Now just as we weren’t interested in just any old language (= set of strings of
letters) but only languages which look as if they are going to have some seman-
tics, so we are not going to become interested in just any old set of propositional
(or predicate) formulae closed under substitution and something that looks like
deduction but only in logics that are the set of formulae whose burden is that
it is legitimate to reason in a certain way (for example p A ¢ — ¢ tells us it’s
ok to infer ¢ from p A ¢) or the set of all formulae true in some (very large and
natural) set of interpretations. For example we will be very interested in that
propositional logic which is the set of tautologies.

2T am indebted to Nick Denyer for showing me the Greek puzzle in Diogenes Laertius, Lives
of the Philosophers Book 6, Chapter 97. “If Theodorus could not be said to be committing
an injustice in doing something, then neither could Hipparchia be said to be committing an
injustice in doing that thing. But Theodorus commits no injustice in hitting himself. So
neither does Hipparchia commit an injustice in hitting Theodorus”.

3See the posthumous article of Tarski’s op. cit:

4We can probably drop this condition, since all the formule the substitution will act on
are finite.
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Formally a valuation (or interpretation) is a function from propositional
letters to truth-values. A valuation can be thought of as a conjunction of literals
and negations of literals (i.e., as the conjunction of those literals that it believes
to be true, and the negations of those literals that it believes to be false).

Next we define eval: valuations x formulae — truth-values by recursion on
formulae.

DEFINITION 15 Let v’ range over valuations.’

eval(A4,v) = v(A), if A is a literal;
eval(AA B,v) := eval(4,v)Aeval(B,v);
eval(AV B,v) := eval(4,v)V eval(B,v);
eval(4 — B,v) := eval(4,v) = eval(B,v);
eval(—A4,v) := - eval(4,v).

This enables us to think of satisfaction as being a relation between formulae
and interpretations. v satisfies A if eval(A,v) = true. (In the propositional
case where we are at the moment this sounds a bit obsessional but thinking
of it in this rather abstract way will help later when we come to semantics for
predicate logic)

The fact that eval is defined on all formulee means that we can think of a
valuation as a complete description of a way the world (or at least the world as
described by propositional logic) can be: via eval, a valuation determines the
truth value of every formula.

To each formula ¢ we can associate a function from valuations to truth-
values, namely the function that sends a valuation to true if the valuation
satisfies ¢ and to false otherwise. That way we can think of any formula
as the set of those valuations that make it true, and this pairing of formulae
with sets-of-valuations is 1-1 up to semantic equivalence. (Two formule are
semantically equivalent if they are satisfied by the same valuations.)

This enables us to think of a formula as the disjunction of all the valuations
that think it is true, so that any formula can be thought of as a disjunction of
lots of conjunctions of literals-and-negations-of-literals.

This is the Normal Form Theorem:

Theorem 16 Every propositional formula is semantically equivalent to one in
disjunctive normal form.

There is a dual theorem that says that any formula can be thought of as a
conjunction of lots of ... disjunctions of literals-and-negations-of-literals, but
it can’t be given the same slick proof and it is simplest to derive it from the
disjunctive normal form theorem by the de Morgan laws.

5To be strictly correct, one should add that the letter A is a variable ranging over formulze.
If you are unhappy about putting sysmbols like ‘A’ between names of formulee instead of
between formulae you may wish to look ahead to page 91. Alternatively you might prefer to
regard ‘AV B’ as a special compound variable constrained to vary only over disjunction, ‘—A’
as a special compound variable constrained only to range over negations, and so on.
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EXERCISE 26 Theorem 16 tells us that—up to logical equivalence—there are
22" distinct propositional formule with n propositional letters. Put another way,
this says that the free boolean algebra with n generators has 2°" elements. How
many bases are there for the free boolean algebra with 22" elements?

This goes back to Boole, who “derived” it by using the Taylor-MacLaurin
theorem over a boolean ring.

We can also prove by structural induction on formule that such a normal
form can always be found.

Truth-tables enable us to discriminate between those formulse that always
come out true and those that might not. We call the first valid.

DEFINITION 17 A wvalid formula is one true under all interpretations

I have carefully phrased this definition so it covers both propositional and
predicate calculi. (T haven’t said anything yet about what an interpretation is in
predicate calculus) A lot of tautologies have proper names that we use: AV —A
is excluded middle; -~—A — A is double negation; =(AAB) +— (-AV-B)
and =(AV B) <— (nAA—-B) are the de Morgan laws; ((A - B) - A) - A
is Peirce’s Law.

The most important logic for us is classical logic: this logic contains all
formulae that are true under all interpretations.

4.1 Semantic and Syntactic Entailment

I said earlier that deduction was an operation on formulae that preserved truth-
in-an-interpretation, and we saw the two ways of thinking of theories. A theory
will typically be the set of things true in some fixed interpretation or bundle of
interpretations.

However, although that is the usual reason for interest in any specific theory,
the theory itself might happen to be—and be conveniently studied as—a rectype.
The idea that a body of truths (which is what a theory is supposed to be, after
all) can be represented as an inductively generated set in this way goes back to
Euclid. The rectype has axioms (like IN has 0) and rules of inference (like IN
has the successor function).

Now we must think about the connection between theories as semantically
characterised (set of things true in an interpretation) and theories syntactically
characterised (things deducible from axioms). These two characterisations give
rise to two relations between formula and sets of formulae.

We write “¢p = ¢” to mean that any interpretation that satisfies ¢ also
satisfies ¢. We overload ‘=’ by writing “T" = ¢” where T is a set of formula to
mean that any interpretation satisfying all formule in I' also satisfies ¢. This
is called semantic entailment.

We write “ip F ¢” to mean that ¢ follows from ¢ by means of whatever
the rules of inference are that we are using. These will typically be clear from
context. Again there is a version of this notation for sets of formule: “I" - ¢”
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means that ¢ can be deduced from assumptions in I'. This is called syntactic
entailment. By abuse of notation we will write ‘L, A - ...’ where A is a single
formula, to be the same as ‘LU {A} F...".

The aim is to prove that these two notions are the same. Of course, the
astute reader will say, this is trivial. Just cook up the axioms and rules of
inference so that they are. Not so: there are funny theories which cannot be
expressed as rectypes in this way. (see exercise 6.1 later)

DEFINITION 18 A theory that is also a finitely presented rectype is said to be
axiomatisable.

If all one wanted to do was show that the set of propositional tautologies
was a rectype (was an axiomatisable theory) the simplest thing to do would
be to exhibit an axiomatisation and show that the set of things deducible from
it is precisely the set of tautologies. However I shall complicate matters by
introducing not one but two rectypes of formulee and showing that all three sets
are the same.

We defined natural numbers as things one can obtain from 0 by adding 1
repeatedly. Any rectype is built up from founders by means of operations
also known as comnstructors. With many rectypes there are alternative ways
of generating its members.® Perhaps lots of founders and very few operations,
or lots of operations and very few founders. This is certainly the case with the
rectypes that constitute the logics we are interested in. We can either have lots
of founders (axioms) and very few operations (rules of inference) (typically only
modus ponens) or lots of rules of inference and few—if any—founders.

4.1.1 Lots of founders, few rules: the Hilbert approach

Only two connectives, — and L. All others defined in terms of them.

—AisA— L

AANBis (A — -B)

AVvBis-~A— B

(Exercise: justify the introduction and elimination rules for the other con-
nectives as derived rules, and verify that these connectives are symmetrical. Do
this on the board)

Connect the occurrences of formula at intro and elim by superscripts. Square
brackets round eliminated formula

Two bits of A-elimination for A defined in terms of — and L.

6Be careful not to confuse this with the situation where an element of a rectype can be
generated in two ways from the one set of rules (“The thing that terrified him was climbing
up the drainpipe”). I am alluding here to the situation where there are two different sets of
rules for generating the same set. This situation may be familiar to you: a given group may
have several different presentations.



66 CHAPTER 4. PROPOSITIONAL CALCULUS

[A]" [~B]?

S 0D

B2

(A" -4

Given derivations ¢ and C’,

(4]
¢ -1
7&9 -A— B
— = [_|C]1
c

Ql-

Here is one set of axioms.
K:A— (B— A)
Ss(A—-(B—-0)—= (A= B)—> (A= 0))
T: (—|B — —|A) — ((—IB — A) — B)

The third axiom does not have a generally accepted proper name. The names
of the first two axioms are motivated by the Curry-Howard correspondence, a
beautiful mathematical phenomenon beyond the scope of this book. See, for
example, Girard Lafont and Taylor.

But we also need rules which enable us to infer things from our axioms.
These are (i) a rule of substitution (every subsitution-instance of a theorem is
a theorem) and modus ponens: from A and A — B infer B. Recall in this
connection the habit first shown on page 2.1.4 of presenting an inference with
premisses above and conclusion below the line. It’s customary to display the
modus ponens rule as:

A A—-B
B

Recall the idea of a proof from section 2.1.7. Naturally the corresponding
notion here is a lot more complicated, though it is quite easy to reconstruct
what it must be. A Goédel-style proof that I' F ¢ is a finite list of formulae
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wherein every formula is either a member of ' or is obtained from an earlier
member of the list by substitution or from two earlier items in the list by means
of modus ponens.”

This definition of Gddel-style proof makes proofs into things that are just
as much mathematical objects as are numbers or groups or anything else. This
is a distinctive development of 20th century mathematics. (Specifically—in
the spirit of the small print on page 73—proofs are members of an inductively
defined set: any list of substitution instances of axioms is a proof; any list
obtained by appending on the end of a list [ a formula obtained by doing modus
ponens to two formulae in [ is a proof. A theorem is the last member of a proof.)

EXERCISE 27 Construct Gddel-proofs of the following:

(
(b) A — (A— B)

(¢) A= (=B — —-(A — B))

(d) (A— B) = ((-A — B) » B)
(

The Deduction Theorem

The deduction theorem for a logic L is the assertion
if L,AF B then L+ A — B.

(The converse is easy)

Theorem 19 The deduction theorem holds for L iff L contains (all substitution
instances of ) K and S.

Proof:

L — R The left-to-right direction is easy, for we can use the deduction theorem
to construct proofs of K and S. This we do as follows:

LF(A-(B—-C)—» ((A—=B)—=>(4-0))
(which is what we want) holds iff (by the deduction theorem)
LU{A->B-0O)N}F(A—=B) = (A—>0)
iff (by the deduction theorem)
Lu{(A—-(B—-(),(A=-B)}FA—-C)
iff (by the deduction theorem)
LU{(A—(B—0()),(A— B), A} C.

But this last we can certainly do, since

T“An argument isn’t just contradiction, it is a reasoned series of steps tending to establish
a conclusion.” “No it isn’t!”—the Blessed Python.
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(A= (B—C)); (A— B); A; (B— C); B; C]

is a Godel-proof of C from LU {(A — (B — C)),(A — B), A}.

(and we’ve already seen how to do this by natural deduction). We also
want L - A — (B — A). This holds (by the deduction theorem) iff
LU{A} F (B — A) iff (by the deduction theorem again) LU {4, B} - A.

R — L Suppose L, A+ B. That is to say, there is a (G6del) proof of B in which
A is allowed as an extra axiom. Let the ¢th member of this list be B;. We
prove by induction on ¢ that L - A — B;. B; — (A — B;) is always a
(substitution instance of) an axiom (because of K), so if B; is an axiom
we have L F A — B; by modus ponens. If B; is A we will need to know
LF A — A and we know this from exercise 27 part (??). If B; is obtained
by modus ponens from two earlier things in the list, say B; and B; — B;
then by induction hypothesis we have L+ A — Bj and L+ A = (B; —
B;). But by S this second formula gives us L - (A = B;) = (A — B;)
and then L - A — B; by modus ponens.

What the deduction theorem says is that a particular relation between for-
mule (namely deducibility) is actually representable by a connective within the
language to which the formula belong.

Put like this it sounds a bit less trivial. After all, it’s quite plausible that
we could set up a formal language with a funny kind of symbol and axioms
to say that the symbol means a kind of conditional, but where the conditional
describes something other than deducibility within the system. In fact there are
lots of systems like this.

[HOLE could say more about this)

All readers should at least attempt exercise 27. It will bring home to them
how difficult it is to construct proofs of tautologies from these axioms with
substitution and modus ponens as sole rules of inference. If one is trying to
prove B then one has to find A such that both A and A — B can be proved.
The problem is that there are infinitely many As that are candidates for this
role, with the result that there is no sensible feasible search strategy for proofs.
Suppose we had a finite collection of formula all arising somehow from B, such
that if there is an A such that both - A — B and F A then there was such an
A in this finite set, then we would have a procedure for reliably finding proofs.

The solution is to have few founders and lots of rules, but let us not leap
into it without a bit of motivation. Anyone who has tried proving theorems
from these axioms will not only have noticed how difficult it is, but will have
spotted how useful the deduction theorem is. One is tempted to describe the
deduction theorem as a derived rule of inference but of course it is nothing of
the kind. It doesn’t provide proofs in the system, but provides (meta)proofs
that such proofs can be found. And it does so constructively: a (meta)proof
that there is a proof of B can be teased apart to furnish a proof of B. If we are
to procede from lots-of-founders-and-few-rules to lots-of-rules-but-few-founders,
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the usefulness of the deduction theorem gives us strong hints about what those
rules should be.

EXERCISE 28 Let T be an aziomatisable theory, and ¢ an arbitrary theorem
of T (which is not a truth-table tautology). Show that T' has an axiomatisation
AU {¢} where ¢ does not follow from A. (Hint: use Peirce’s Law).

4.1.2 No founders, lots of rules

A number of these rules have been around for so long that they have latin
names. We have already seen modus ponens. In modus ponens one affirms the
antecedent and infers the consequent. Modus tollens is the rule: AL_%;B

Affirming the consequent and inferring the antecedent—A—_le—B is a fallacy

(= defective inference).
Natural deduction:

(4] (B]

e A B . .. AVB C C
V-int: m, m, V-elim: C

. A B . ANB. AAB
A-int: m, A-elim: T, T

(Al

; B 8. . A A= B

—-int m H —-elim: B
[—4]

. e L ]
Ex falso sequitur quodlibet”; I contradiction I

These last two are the only rules that specifically mention negation. —B is
B— 1.
[HOLE Do proofs of K and S to show what fun it is]

EXERCISE 29 Find Natural Deduction proofs of the following formule:
(A= (B—=>C)) = (B—=(A—-0));
A— (BANC)—> (A—>B)AN(A—CO);
((AAB) - C)—> A— (B—C);
A— (B— A);
A— ((A— B) > B);
(A->(B—->C)—=>(A—>B)—> (A= 0));
(A— B) > (((A— B) —» B) = B);
((A—» B)—>B)—» B)—> A— B;
(A—-B)—> A) - ((A— B) = B);
(AN(BVC)) = ((AANB)V(ANC)).
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These rules involve action at a distance in the following sense. Let us attempt
to prove (A — (B — C)) = ((A - B) = (A — C)). The obvious thing to
try—indeed the only thing to try—is the —-introduction rule. We must have
deduced (A — B) = (A — C) from A — (B — C). So we know so far that our
proof looks like

[A— (B—C)

(A-B)—> (A—>0O)
(A-(B—-0C)—> (A= B)—=(A—=0))

The presence of the dots means not only that we don’t at this stage know
what the rest of the proof will be, it also means that we don’t know how much
space to leave for the bits that are to come! It is true that backward proof
search is easier with natural deduction systems than with Hilbert-style systems,
in that we have solved the problem of the unbounded search, but evidently not
all the problems have disappeared.

4.1.3 Sequent Calculus

For the moment a sequent is a formula I" F ¢ where I is a set of formulae and
¥ is a formula. We know what this means: it means that there is a deduction
of ¢y from I'. In sequent calculus one reasons about sequents rather than about
the formulze that compose them, as one did with natural deduction.

Although the invention of sequent calculus antedates the invention of com-
puting machinery by a decade, and antedates the development of theorem-
proving by machine by several decades, there is merit in the anachronistic view
that sequent calculus is the programming solution to the problem of backward
search for proofs. To take the example above, one could represent the informa-
tion in the picture more economically by some picture like the following;:

A (B—->C)F(A—>B)—> (A= 0))
FA—-(B—-C)—-(A—=-B)—=(A—=0))

saying that if the upper assertion about the existence of a proof is correct, then
so is the lower one. The rules that this picture gives rise to are as follows:

yp. DbEA TorA P Y
T oVaFA TFA, Ve
. Dy, oA . TEFAY THEAG
AL T ONGF A AR : TFAJAS
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CTEA O TLoEA
Li pp R Ry
TEAG Tk A T EAG
— L T oS oFA R 7RS4
and weakening: ﬁ%ﬁm

contraction-L %; contraction-R %

TFAA T, AFA
TUT F A, A

and Cut:

There is no rule for the biconditional: we think of it as a conjunction of two
conditionals.

We accept any sequent that has a formula appearing on both sides. Such
sequents are called initial sequents.

Try thinking of a sequent as saying that there is a proof of something on the
right using only premisses found on the left. To illustrate, think about the rule
A-L. Tt tells us we can infer “AA B+ C” from “A,B+ C”. Now “A,B+ C”
says that there is a deduction of C from A and B. But if there is a deduction of
C from A and B, then there is certainly a deduction of C' from A A B, because
one can get A and B from A A B by two uses of A-elim.

A F A is an initial sequent. Use —-R to infer - A, = A. Now it just isn’t true
that there is always a proof of A or a proof of —A, so this example shows that
it similarly just isn’t true that a sequent can be taken to assert that there is a
proof of something on the right using only premisses found on the left—unless
we restrict matters so that there is only one formula on the right of which more
later. However it does help inculcate the good habit of thinking of sequents as
meta-formule, as things that formalise facts about formula rather than facts of
the kind formalised by the formulae.

No-one is suggesting that sequent calculus is the right way to do the theory of
proofs. There are obvious infelicities in its development. One rather glaring one
is the fact that there is one obvious natural-deduction proof of (AV (BAC)) —
((AV B) A (AAC)) but there are two sequent-versions of this rather than
one. Sequent calculus is now more than seventy years old, and modern proof
theorists have more subtle and complicated constructs that repressent attempts
to capture the underlying mathematics better. This is an active area of research.

It is natural to think that the rules we use might have been chosen because
there is a salient feature that they all preserve in the sense that, for each rule,
if its inputs have that feature, so do its outputs. This is true: the rules preserve
truth. (They also preserve validity). But there are other properties that the
rules might preserve, and consideration of them leads to weaker logics that are
of some concern to logicians interested in computation.

Let us now drop down a level and return from sequents (assertions about
inferences in the logic) to the logic itself. The logic we have just seen is called
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classical logic and its inferences preserve truth. Preserving truth is exten-
sional in that what is preserved is a property of what the thing-proved evaluates
to, evaluations being functions that take intensions to extensions. Some other
logics preserve intensional properties. One interesting case is constructive logic,
where what is preserved is not a property of the thing proved but rather a
property of the set-of-available-proofs of the thing proved. Rules of inference
are thought of as operations on proofs, giving rise to new proofs. Construc-
tive Logic allows only those operations which preserve the property (of proofs)
of corresponding to a construction. There is something particularly appealing
about an existence proof that can be easily transformed into a construction of
the thing whose existence has been proved. Constructivists say that such proofs
have the existence property. For example, consider the following (admittedly
rather artificial) challenge.

Find = and y, both irrationals but both real, such that xV is rational.

Well, we all know that /2 is irrational, so if \/5\/§ is rational we can take
both z and y to be V2. On the other hand, if \/5\/5 is not rational we take x

to be \/5\/E and y to be v/2 and we then find that z¥ = 2. So either way we
succeed.

Except that we don’t. The challenge was to find such a pair z and y, not
merely to prove that such a pair exists. Our short existence proof doesn’t
have the existence property. Contrast this with the proof of Cantor’s theorem
(theorem 6): where one has an algorithm that acepts a candidate injection, and
explicitly provides something not in its range.

A moment’s reflection will make it clear why our proof of the existence of a
pair doesn’t have the existence property. The existence property will fail if at
any stage in the proof we are in one of two cases, but don’t know which, but
we nevertheless exploit the knowledge that we are in one of the two cases. We
must never exploit our knowledge that AV B unless we also know A, or know
B. To preserve the existence property, we must ensure that whenever H AV B
then - A or F B. (We will see proofs with the same features in exercises 6.6.1
and 6.6.3.) This means that we may make no use of the law of the excluded
middle.

A logic designed to respect these constraints is therefore developed not to
capture the set of those inferences that preserve a nice property of formulz, but
to ensure that proofs in it have a nice property. This means perhaps that we
should really think of constructive logic not as a Logic at all. It’s best seen not
as a rectype of formulae but as a rectype of proofs-with-the-existence-property.
We recover a Logic (= set of formula closed under deduction and substitution)
from this by throwing away the proofs and keeping the conclusions.

I'm not going to tell you what set of formulae constructive logic regards as
valid. As it happens, most of the pruning that needs to be done can be achieved
by the simple device of requiring all our sequents to have only one formula on
the right. It’s not entirely clear why this is the case, but this restriction does
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at least ensure that the view of sequents as metaformulze that say “there is a
proof of something on the right using only premisses that appear on the left” is
correct.

We can generalise the concept of valuation to include all functions from
literals to—well, anything with the same signature as boolean algebras. (There
must be operations to interpret ‘A’, ‘V’ etc). The obvious candidate for such a
structure would be a boolean algebra. However, enlarging the set of valuations
in this way has no effect on the class of sentences certified as valid as long as
the set of values of the valuations forms a boolean algebra. This gives us a way
of characterising boolean algebras.

EXERCISE 30 Show that a structure for the language of boolean algebras (ie,
with 0, 1, A, V and =) is a boolean algebra iff it validates all truth-table tautolo-
gies.

So boolean algebras characterise classical logic. Is there a different kind of
algebra that characterises constructive logic? Yes, there is, and these algebras
are called Heyting algebras. A Heyting algebra is a complete distributive
lattice, typically presented with a defined operator — where p — ¢ is \/{r :
pAr < q}. This is another example of overloading, for the arrow has already
been used for the material conditional. Naturally this is deliberate. Since
everything that is constructively correct is classically valid, but not vice versa
there must be algebras that are Heyting algebras but are not boolean algebras.
In fact there are plenty and, fortunately for people attempting this next exercise,
some of them are very small.

EXERCISE 31 Show that (A — B) — A) — A (Peirce’s Law) cannot be
deduced from K and S.

It might be an idea to be more explicit about how these two ways of gen-
erating a theory (no founders, lots of rules, versus lots of founders, few rules)
really look when one is more formal about it. To do this rigorously we need to
return to the device used a few paragraphs ago in the discussion of constructive
logic. We first set out a rectype of proof trees built up by the natural deduc-
tion constructors. Proof trees are a special kind of decorated tree of formulae.
A theorem will be the formula at the bottom of a tree all of whose leaves are
labelled by formulae enclosed by ‘[ ]'.

Clearly one of the things that gives us trouble with \/5\/§ is excluded middle
(me must have the disjunction property if we are to have the existence prop-
erty!). However it does not mean that constructive logic thinks there are more
than two truth-values. Quite the reverse!

EXERCISE 32 Find a sequent calculus proof of
—(A+— B),~(A+— C),~(C +— B) F

satisfying the single-conclusion constraint. (This is hard, and the proof is long!)
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4.2 The Completeness theorem

The axiomatic and the natural deduction approach both give rise to a notion of
syntactic entailment. I shall show that both of these are the same as semantic
entailment. This is the Completeness theorem. First a toy Completeness
theorem. (Lesniewski: op cit)
This is going to be sketched, to give you a taste of how these things work.
Pure biconditional logic has one connective, “—"” and one propositional
constant symbol L. There are three axioms:

pe—p
(p+—q) «— (g+—p)
(pe—q) =)= (pe— (g 1))

We do not have a negation sign, but if we want —p we can introduce it as
p— L.

We also have a rule of modus ponens and a rule of substitutivity of the
biconditional: if A and ¢ <— ¢ then A[¢/¢]. (Recall that A[¢/¢] is the result
of replacing in A all occurences of ¢ by ¢.)

We are going to show that something is a (truth-table) valid expression of
this logic iff it is derivable from these axioms. In fact we can show

EXERCISE 33 The following are equivalent:

¢ is valid;

¢ is a consequence of the three above azioms;

Every propositional letter appearing in ¢ appears an even number of times.

First we prove that for any two formulae ¢ and i with the same multiset of
literals we have ¢ F ¢ and ¢ F ¢ (We say ¢ and 1 are interdeducible.) Then
if ® has two occurrences of p it will be interdeducible with something of the
form (p «— p) +— '.

|

Now we return to the main plot: the completeness theorem for Propositional
Logic.

Theorem 20 : The Completeness Theorem For Propositional Logic
The following are equivalent:
(1) ¢ is provable by natural deduction;
(2) ¢ is provable from the three axioms K, S and T';
(3) ¢ is truth-table valid.

Proof:
We will prove that 3 -2 — 1 — 3.
(2) = (1)
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First we show that all Kalmar’s axioms follow by natural deduction—by
inspection. Then we use induction: if there are natural deduction proofs of A4
and A — B there is a natural deduction proof of B!

(1) > (3)

To show that everything proved by natural deduction is truth-table valid we
need only note that, for each rule, if the hypotheses are true (under a given
valuation) then the conclusion is too. By induction on composition of rules
this is true for molecular proofs as well. If we have a molecular proof with no
hypotheses, then vacuously they are all true (under a given valuation), so the
conclusion likewise is true (under a given valuation). But the given valuation
was arbitrary, so the conclusion is true under all valuations.

(3) = (2) (This proof is due to Kalmar.)

Now to show that all tautologies follow from Kalmar’s axioms.

At this point we must invoke exercise 27, since we need the answers to
complete the proof of this theorem. It enjoins us to prove the following;:

(a) B —» —-—B

(b) =A — (A — B)

(¢) A— (=B = =(A — B))

(d) (A— B) = ((-A — B) = B)

If we think of a propositional formula in connection with a truth-table for
it, it is natural to say things like: p «— ¢ is true as long as p and ¢ are both
true or both false, and false otherwise. Thus truth-tables for formulse should
suggest to us deduction relations like

A BFrA+— B

—|A,—|B|—A(—>B

and similarly
A, -BF —|(A — B)

To be precise, we can show:

Let A be a molecular wif containing propositional letters p; ...p,, and let f
be a map from {k € IN: 1 < k < n} to {true,false}. If A is satisfied in the
row of the truth-table where p; is assigned truth-value f(i), then

P ...P,FA

where P; is p; if f(i) = true and —p; if f(i) = false. If A is not satisfied in
that row then
P...P, A

. and we prove this by a straightforward induction on the rectype of
formulae.
We have only two primitive connectives, = and —, so two cases.

—
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Let A be =B. If B takes the value true in the row P; ... P, then,
by induction hypothesis P;...P, - B. Then, since - p —» ——p
(this is exercise 27 (a)), we have P, ... P, F =—=B, which is to say,
P,...P, F —A as desired. If B takes the value false in the row
Py ... P, then by induction hypothesis P, ... P, F =B. But =B is
A,soP...P, F A

%
Let Abe B — C. Case (1): B takes the value falseinrow P; ... P,.

If B takes the value false in row P; ... P,, then A takes
value true and we want P, ... P, - A. By induction hy-
pothesis we have P ... P, - =B. Since - =p = (p — q)
(this is exercise 27 (b)) we have P, ... P, F B — C, which
isP ...P,F A.

Case (2): C takes the value true in row P ... P,.

Since C takes the value T in row P; ... P,, A takes value
true, and we want P, ... P, b A. By induction hypothesis
we have P, ... P, + C, and so,by K, P,...P, + B = C,
which is to say, P, ... P, - A.

Case (3): B takes value true and C takes value false in row
P...P,.

A therefore takes value false in this row, and we want
Py ... P, F—A. By induction hypothesis we have Py ... P, -
Band P,...P, - =C. But p = (0g = =(p — q)) is a
theorem (this is exercise 27 (c)) so we have P, ... P,
—(B — C), which is P, ... P, - —A.

Suppose now that A is a formula that is truth-table valid, and that it has
propositional letter p; ...p,. Then, for example, both P ...P,_1,p, - A and
Py...P,_1,-p, F A, where the capital letters indicate an arbitrary choice of
= or null prefix as before. So, by the deduction theorem, both p, and —p, F
(PLAPy...NP,_1) - A and we can certainly show that (p — ¢) — (-p —
q) — g is a theorem (this is exercise 27 (d)), so we have P, ... P,,_; - A, and we
have peeled off one hypothesis. Clearly this process can be repeated as often as
desired to obtain - A.

|

The following equivalent assertion—and its analogue for predicate logic—is
known as the completeness theorem as well, and is sometimes a more useful
formulation.

COROLLARY 21 ¢ is consistent (not refutable from the azioms) iff there is a
valuation satisfying it.
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Proof: I/ —=¢ (i.e. ¢ is consistent) iff —¢ is not tautologous. This is turn is the
same as ¢ being satisfiable. ]

If Ty C Ty are theories we say that T5 is an extension of Ty. If T} # T,
then T is a proper extension. (I warned you the word ‘extension’ would
be overloaded!) A theory with no consistent proper extension is—reasonably
enough—said to be complete. Beware: the completeness theorem is not so-
called because it says that the set of all tautologies is a complete theory: it
isn’t!

Lindenbaum algebras

The Lindenbaum algebra of a theory T is the set of T-interdeducibility classes
of formula partially ordered by deducibility. (We now know that semantic and
syntactic entailment are the same, so it doesn’t matter which we mean) That is
to say, if [#] and [¢] are the equivalence classes of ¢ and 9 respectively, then [¢] <
[¢] if ¢ (or anything T-interdeducible with it) — ¢ (or anything interdeducible
with it). The complement of [¢] is naturally [-¢]. The Lindenbaum algebra is
a boolean algebra as long as T' contains all (propositional) tautologies.

The Lindenbaum algebra of the empty theory over an alphabet is of course
the free boolean algebra generated by the literals of that alphabet. Any theory
T over that alphabet corresponds to a filter in this algebra, and T is consistent
iff this filter is proper.

The filter generated by a set of points in the Lindenbaum algebra of a theory
T is just the theory axiomatised by T plus those axioms.

1. If T" is a theory extending T', then the set of equivalence classes of theorems
of T' form a filter in the Lindenbaum algebra of T

2. If T' is a theory extending T then the Lindenbaum algebra of T" is iso-
morphic to the quotient algebra modulo the filter of the previous remark.

3. If T" is a complete extension of T' then the corresponding filter is ultra.

The Compactness theorem

The compactness theorem strictly is an assertion to the effect that a certain
topology on the space of all interpretations is compact. That is how it got its
name. In fact most logic texts make nothing of this fact. One that does is Peter
Johnstone’s book [1987]. Look at exercise 2.6 on page 17.

There are two rather different-sounding facts which are both known as the
compactness theorem.

Theorem 22 .

(1) If T is a theory such that every finite subset of T has an interpretation
making it true then T has such an interpretation.

(1i) Every consistent theory has a complete consistent extension.
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Proof:

(i) If every finite subset of T has an interpretation then every finite subset
of T is consistent, and does not imply a contradiction. So there can be no
proof of a contradiction in 7" either, because any proof of a contradiction would
be finite and would appear in one of the finite subsets of T—which all have
interpretations and so are consistent. But corollary 21 tells us that if T is
consistent it has an interpretation.

We can prove (ii) by means of Zorn’s lemma.

It can also be proved by reasoning about Lindenbaum algebras and using
the Prime Ideal Theorem (theorem 12).

On page 77 we saw how how filters in the Lindenbaum algebra of a theory
T correspond to extensions of T'. The Prime Ideal Theorem tells us that there
is an ultrafilter in the Lindenbaum algebra of T'. This ultrafilter corresponds to
a complete extension of T'.

|

There are various applications of the prime ideal theorem/completeness the-
orem. What follows next is a typical example of the way one can use the Prime
ideal theorem to “glue” together partial solutions to a problem.

REMARK 23 If every finite subgraph of a graph is n-colourable, then the graph
itself is n-colourable.

(These are vertex colourings not edge colourings). I am going to take the
case n = 4, for ease of illustration. We have an infinite graph (G, E), all of
whose finite subgraphs are 4-colourable.

The language:

For each vertex x we have four propositional letters p,, qs, rz, .. Each of
these corresponds to an assertion that x has been painted some given colour.
For each pair z,y of vertices we have a propositional letter ¢, , which will be
used to say whether or not x and y are connected.

(Notice that the ‘z’ is not a variable and that strictly speaking these propo-
sitional letters—‘p,’, ‘qy’, ‘¢z,  etc.—have no internal structure and the only
reason why we write them out like this is to be make it more obvious what is
going on. The subscripts are not even part of the syntax but merely part of
the typesetting! The information coded by the subscripts is not preserved by
relettering of variables, which is a fairly mild process that ought to preserve
anything of interest.)

The theory:

We adopt the following axiom schemes:

Lo (e A e Are ASg) V (70 A ATy A8z ) V (700 A Qe ATy ASy) V
(=pz A =gz ATy A s,;) for each z;

2. cay = (Px ADy) A (g A qy) AN(rg Ary) A (82 A sy) for each z and y;

3. cy,y if G has an edge joining = and y, and —¢, 4 if not.
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The first scheme says that every vertex has precisely one colour. The second
says that adjacent vertices have different colours.

This theory is consistent since all its finite subtheories are consistent. (The
only thing they can say is that some finite subgraph is 4-colourable, and we are
told that this is true).

So there is a valuation v making all these axioms true. Any such valuation
gives rise to a four-colouring of G: if v(p;) = true we colour vertex = with
colour p, and so on.

Now try to prove the order extension principle (page 53) by the same trick:
i.e., using the compactness theorem for propositional logic not Zorn’s lemma.

Interpolation

(Recall that £(P) is the propositional formula that can be built up from the
literals in P.)

[HOLE Picture with intersecting circles]

Suppose P — @Q is a tautology, but £(P) N £L(Q) = 0. What can we say?
Well, there is no valuation making P true and @) false. But, since valuations of
P and @ can be done independently, it means that either there is no valuation
making P true, or no valuation making @) false. With a view to prompt gener-
alisation, we can tell ourselves that even if £(P) N £(Q) = (), the intersection
really contains true and false, and that what we have proved is that either
P — false is a tautology or true — () is a tautology. But since P — true
and false — (Q are always tautologies, we can tell ourselves that what we have
established is there there is some formula ¢ in the common vocabulary (which
must be either true or false) such that both P — ¢ and ¢ — @ are tautolo-
gies. If we now think about how to do this “with parameters” we get a rather
more substantial result.

Theorem 24 The interpolation lemma.

Let P, Q, and R be three disjoint propositional alphabets; let s be a formula
in LPUQ) and t a formula in L(QU R). If s -t then there is u € L(Q) such
that s Fu and u F t.

Proof:

We do this by induction on the number of variables common to s and t. We
have already established the base case, where £(s Nt) is empty. Suppose now
that s and ¢t have n + 1 variables in common. Let the n 4+ 1th be ‘p’. Then
there are s’ and s”, both p-free, such that s is equivalent to (s’ Ap) V (s" A —p).
Similarly there are ¢’ and ¢ such that t is equivalent to (¢ A p) V (£ A —p).
We know that any valuation making s true must make ¢ true. But also any
valuation making s true must either make s’ A p true (in which case it makes
t' A p true) or make s” A —p true (in which case it makes ¢t A —p true). So
s' Ft' and s"” F . By induction there are interpolants u' and u" such that
sy, v Ft, sy and v F ¢". The interpolant we need for s and ¢ is
(u' Ap)V (u" A —p).

|
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Nonmonotonic reasoning

In artifical intelligence there are people who are interested in what they call
Nonmonotonic reasoning, which is an attempt to formalise inferences like
the following:

Tweety is a bird; we haven’t yet been told that Tweety can’t fly.
Accordingly deduce: Tweety can fly.

(T think in their slang they say things like: “it’s a default assumption that
all birds can fly”)

Contrast this with deductions in a more ordinary style: Lifl it Q. Consider

the operation that takes a set ' of formulae and returns I'U the set of all formulae
Q@ such that P — @ and () are in I". This is clearly a monotone function on the
power set of the set of all formula and there is no problem in showing that it
will have a fixed point which will be the deductive closure of I'. If you have rules
of inference that say “if you believe this but don’t believe that, then resolve to
believe the other”!° then you cannot rely on theorem 8 to tell you there are fixed
points/deductive closures. In this connection look at Question 3.1.3.2 part (ii)
I hope I don’t have to emphasise that nonmonotonic reasoning is a mess!

4.3 Exercises on propositional Logic

1. Prove the order extension principle using the compactness theorem fro
propositional logic.

10remember that withholding belief from p isn’t the same as according belief to —p!!



Chapter 5

Predicate calculus

5.1 The Birth of model theory

An important spur to the development of Logic was the problem of the axiom
of parallels and the discovery of non-euclidean geometry. If we are trying to
determine whether or not the axiom of parallels follows from Euclid’s other
axioms, what do we do? If it does, life is easy, for it will be sufficient to exhibit
a proof. If it doesn’t, we need to demonstrate that there is no proof.

One way to do this would be to show that every proof fails to be a proof
of the parallel axiom from the other axioms. We have already made a start on
proofs-as-mathematical-objects, which is what is needed for this approach. We
could also show that there is a model universe in which the parallel axiom is false
but all the other axioms of Euclid are true. That way we do not have to make
proofs into mathematical objects, but we do have to develop a robust concept
of a formula being true in a structure. That is to say, we need semantics. This
step—of thinking of a symbolism separately from the subject matter it was
devised to describe, and as having a life of its own—creates a division between
syntax and semantics without which no independence proofs (of this second
kind) can be had. Key idea: the autonomy of syntax. The most characteristic
products of twentieth-century logic, the completeness theorems, arise like the
Greek conception of sexuality from the need to rejoin the two halves of this
beast.

A completeness theorem is something that identifies a syntactic property of
a formula (like having an even number of occurrences of every variable) with a
semantic property (like being true under all interpretations). The major result
of this chapter will be the completeness theorem for predicate calculus.

5.2 The language of predicate logic

EXERCISE 34 Fiz a language L with constants and function letters. (see
section 2.2.2). A substitution is a map from the variables of L to the terms of

81
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L. It extends by recursion on L to a map from L-terms to L-terms.

Say R(t1,t2) iff ta is a substitution instance of t1. (That is to say, iff there
is a substitution sending t1 to t2.)

The intersection of this preorder with its converse is an equivalence relation.
Consider the quotient structure (T ,<). It has an obvious bottom element, which
is the equivalence class containing all the variables of L. Show that (i) (T, <)
is a lower semilattice, and (ii) If two elements of (T, <) have an upper bound
they have a least upper bound.

A declaration of the language of predicate calculus as a recursive datatype
was given in section 2.2.2, but no further details were supplied. We will as-
sume that our variables, rather than being z,y, z etc, are all z’s with numerical
subscripts. This clearly makes no difference to us, qua language users, since it
is a trivial relettering, but it does make life a lot easier for us qua students of
the language. The subscripts are quite important. We call them indices. The
purpose of this change in notation is to make visible to the naked eye the fact
that we can enumerate the variables: it is much clearer that this is the case if
they are written as “zy, x> ... ” than if they are written as “z, y ... ”

To keep things simple we will also have to assume that no variable is bound
more than once in any formula, and that there are no occurrences of any variable
outside the scope of any quantifier that binds some other occurrence of that
variable. Thus we will outlaw ((Vz)F(z)) V ((Vz)G(z)) and F(z) vV (Vz)(Gx)
even though they are perfectly good wifs. It will make life easier later.

The universal closure of a formula is the result of prefixing it with enough
universal quantifiers to bind all the free variables in it.

Function and predicate letters are not variables and they cannot be bound
with quantifiers. This distinction in the syntax between things that can be
bound by quantifiers (the variables) and the things that can’t (the predicate
and function letters) sounds like a restriction and therefore a drawback, but it
is of fundamental importance and it enables us to draw useful distinctions. In
chapter 1 we were introduced to the idea of a mathematical object as a set-with-
knobs-on. The language of predicate logic fitted into this picture by assuming
that the variables are intended to range over members of the carrier set, and
the predicate and function letters point to the knobs.

In due course we will explain in detail how this semantics is done, but we
can start with some elementary illustrations. ‘(3z)(Jy)(z # y)’ is a formula
which is true in those structures with at least two elements. ‘(3z)(Jy)(3z)(z #
YAy # z Az # x) is a sentence true in those structures with at least three
elements. Clearly for any n € IN we can supply a sentence in this style which
is true in models with at least n elements. Trivial though this example is, it
serves to make a useful point: we cannot do this in a way that is uniform in
n. The temptation to write: (a1 ...am)(Vi,k < m)(k # j — a; # ax) or
even (3ai ...am)(Ajzp<m @j # ar) must be resisted—in this context at least.
This formula is true in precisely those structures whose carrier sets have at least
n elements, but it is not a formula in the predicate calculus as the subscripts
on the variables are not themselves variables and cannot be bound. There are
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plenty of things we can say in predicate logic that cannot be said uniformly, and
some of them appear in the exercises in this chapter.

Less trivial illustrations will concern sets with nontrivial structure. We have
already seen a set of axioms for lattices, and a set for boolean algebras. Struc-
tures that can be satisfactorily described by languages whose variables range
only over their carrier set are said to have first-order theories. A property of
structures that can be captured by a formula whose variables range only over
elements of the carrier set is said to be first-order. For this reason predicate
calculus is sometimes called first-order logic in contrast to second-order logic
where the variables (or at least some of them) range not over elements of the
carrier set but over subsets of the carrier set. There is also third-order and so
on. More of that later.

There are important connections between logical complexity and computa-
tional complexity. Logical complexity asks how complicated a formula must
be to capture a property (first-order versus second-order, number of quantifiers
used etc.) while computational complexity concerns it time taken to establish
whether or not a finite object has a property in terms of the size of the object. A
first-order property can be checked in time bounded by a polynomial in the size
of the object being checked for that property, and the degree of the bounding
polynomial will be the number of quantifiers in the formula capturing the prop-
erty. That much is fairly obvious. There are converses, but they are quite hard
to find. For example, there is a polynomial time algorithm to check whether or
not a finite group is simple (has no nontrivial normal subgroups) but simplicity
is not a first-order property, as we shall see. To prove converses to the effect
that a property checkable in polynomial time can be captured by a formula in
a first-order language one needs to spice up the languages in use with various
extra syntactic devices—rather in the way that may have occurred to the reader
in their quest for a formula that is true in precisely those models with at least
n element. In fact the devices exploited are much more complicated and there
is no space to expound them here.

Polynomial-time problem = first-order. Being a free widget is not nth order
for any n.

Sorts and higher-order logic. Many-sorted logic is equivalent to one-sorted.
(vector spaces)

Trivial fact: completeness theorem not true for higher-order logic. Second-
order arithmetic.

In tackling the following exercises the reader should bear in mind that the
way to find a set of first-order axioms for a theory is to remember that first-
order means quantifying over elements not subsets. Identify the property and
then the language will write itself.

1. Give sets of axioms in suitable first order languages (to be specified) for
the following theories. (These are very roughly in order of difficulty: the
first two should be easy and the last two definitely require some thought.)

(a) the theory of integral domains;
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the theory of ordered groups (i.e. groups having a given total order);
the theory of groups of order 60;

)

(c)

(d) the theory of simple groups of order 60;
) the theory of algebraically closed fields of characteristic zero;
)

the theory of partial orders in which every element belongs to a
unique maximal antichain;

(g) the theory of commutative local rings (a local ring being a ring with
a unique maximal ideal).

. Which of the following have first-order theories?

(i) Groups all of whose elements are of finite order?

(ii) Groups all of whose non-identity elements are of infinite order?

(iii) Groups with trivial centre?

(iv) Groups with an element of infinite order in their centre? (v) Simple
groups?

(vi) Noetherian rings (rings wherein every C-chain of ideals has a maximal
element)?

(vii) Free groups?

. An abelian group is torsion-free just if there are no non-zero elements of

finite order. Describe a set of first-order axioms for the theory of torsion-
free abelian groups. Does this theory have a finite set of axioms?

. (1) Write down a theory in the predicate calculus with equality which has

only finite models. Is the use of equality neccessary here?

(ii) Write down a theory in the predicate calculus with equality which has
only infinite models. Is the use of equality neccessary here?

(iii) For X C IN find a theory Tx which will have a model of size n iff
neX.

. We say that a formula is simple existential when it is of the form Jy¢

where ¢ is a conjunction of basic formulae (atomic formulae and nega-
tions of atomic formulae). Suppose that in a theory T every simple exis-
tential formula is equivalent to a quantifier-free formula. Show first that
any existential formula Jyi (where ¢ is quantifier-free) is equivalent to a
quantifier-free formula. Deduce that any formula is equivalent to a quan-
tifier free-formula.

. Let C be the first order language having one binary predicate ¢, for each

positive rational number r and let T be the C-theory with axioms (i)
(V) (2, ) for each r > 0, (ii) (Va,y)(dr(z,y) = ¢s(y, z)) for each (r,s)
with r < s, (iii) (Vx,y, 2)(dr(z,y) A ds(y,2)) > dris(x, 2)) for each (r,s).
Show that every metric space (X,d) becomes a T-model if we interpret
or(z,y) as ‘d(z,y) < r’. Is every T-model obtained from a metric space
in this way?
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There is no robust concept of second-order language because of autonomy
of syntax. One can set up the language with several distinct suites of variables,
so that for example, lower case variables range over elements of the carrier
set, upper case variables range over subsets of the carrier set. This is common
practice, but there is nothing in the langauge that constrains us to consider
only those interpretations where the upper case variables range over all subsets
of the carrier set. There is nothing to stop us using interpretations where in
addition to a carrier set X, one has a designated proper subset of P(X) as
the set over which the upper case variables range. All one can do is rule that
such interpretations are nonstandard. However there is a concept of a second-
order model—a model is second order if the designated subset of P(X) that it
includes does indeed contain all subsets of the carrier set, in other words, if it
is not nonstandard in that sense.

The Prenex Normal Form theorem says that every formula of predicate
calculus is equivalent to one with all its quantifiers at the beginning, so that
every atomic subformula is within the scope of every quantifier.

EXERCISE 35 Prove the Prenex Normal Form theorem from first principles.

One of the nice things about the Prenex Normal Form theorem is that it
gives us a fairly tidy classification of formulae in terms of complexity. A formula
which—once its quantifiers have been pulled to the front—has only universal
quantifiers is said to be universal, one which similarly has universal quantifiers
followed by existential is said to be universal-existential and by forcing all for-
mulz into relatively simply defined classes like this it provides a framework
framework which makes it natural to state things like: the class of models of
a universal sentence is closed under end-extension, or the class of models of
a universal-existential sentence is closed under unions of chains. These things
are quite easy to prove, but we wouldn’t be naturally motivated to prove them
without the PNF.

Analogues of the PNF can be proved for languages intended to be used as
higher-order languages, those with several distinct suites of variables intended
to range over elements of the carrier set, over subsets of the carrier set, and so
on.

P = NP?

An important class of properties is the class of ¥? properties: those that can be
captured by a formula with one existential second-order quantifier in a suitable
second-order language. See Garey and Johnson, for lots of examples. Now just
as it is plausible that a first-order property of a finite structure is checkable in
polynomial time, and that this can be done deterministically, it is plausible that
a X7 property can be checked nondeterministically in polynomial time. After
all, if the property holds of the finite structure, one can verify it by finding a
single subset with the right features—and all these features are first order and
can be checked in polynomial time. For a suitably spiced-up first-order language
L this assertion has a converse as well: a property is X7 in £ iff it is in NP.
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It is not hard to show that there are properties that are captured by X2
formulae that are not captured by (first-order) formulae of £. What the above
discussion reveals is that the famous P = NP question is equivalent to the
question whether or not for every ¥? formula there is a £-formula which has
the same finite models. Thus we can see that P = NP is really a question about
how rich the variety of finite structures is: if it is very rich then there will be
¥? formula such that no £-formula is complex enough to have the same finite
models and P will not equal NP.

5.3 Formalising predicate logic

As we did in the propositional case in chap 4 we start with the “lots of founders
one constructor” point of view, with the intention of abandoning it as promptly
here as we did there.

5.3.1 Predicate calculus in the axiomatic style

Add to the three axioms for propositional logic the two new axioms:
VzA(z) — A(t) ; A(t) — 3zA(z)
and the two new rules of inference:

S — A(t)
S — VtA(¥)
A(t) —» S

m t’ not free in S.

The first of these two rules is often called universal generalisation or
UG for short. It’s a common strategy and deserves a short snappy name. To
prove that all F's are G, reason as follows: let  be an F', deduce that z is a G|
remark that no assumptions were made about x beyond the fact that it was an
F'. Conclusion: all F's must therefore be G.

5.3.2 Predicate calculus in the natural deduction style

To the natural deduction rules for propositional calculus we add rules for intro-
ducing an eliminating the quantifiers.

[HOLE Insert piccies here]

But we will not develop this further. We will procede immediately to a
sequent treatment.

Y left.

F@t),l'FA
(Vx)(F(z)), T F A

where ¢ is an arbitrary term
V right
' A, F(a)
L'k A, (Vz)(F(x))
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‘a’ is a variable not free in the lower sequent.

3 left
F(a),TF A

(Fz)(F(z)), T F A
where ‘a’ is a variable not free in the lower sequent.
3 right

T+ A, F(t)
TFA, (@) (F(2)

where t is an arbitrary term.

Reflection on the first footnote on page 62 might help to make sense of the
side conditions on the variables in 3 left and V- right. (“but x was arbitrary,
therefore ... ”)

Notice similarity between V-elimination and 3-elimination.

5.3.3 Exercises on sequent calculus

In this question ¢ and 1 are formula in which z is not free, while ¢(z) and ¥ (x)
are formule in which x may be free.
Find proofs of the following sequents.

—Vzo(x) F Jz—¢(z)
—dzg(z) F Ve-o(z)

o A Jxp(z) F (o A (x
¢V Vzyp(z) V(o V h(z
¢ — Jzy(x) F Jz(p
¢ = Vap(z) F Vo (o )
Jzp(x) = ¢ F Vo (p(x )
Vaeo(z) = ¢ - Jx(o(x )
Axp(x) V Jayp(z) F Tz (o(x)
Vro(z) AVzy(z) F Ve (p(x)

)
)
— ()
— (x
) —
) —

()
¥(x))

and deduce the prenex normal form theorem.

)
)
)
)
Vi
A

/\A/\A

5.4 Semantics

We saw earlier (2.2.2) how the syntax of predicate calculus (the set of formula)
can be constructed as a rectype, in a way analogous to the construction of
the syntax of propositional logic as a rectype. We saw also how semantics can
be given for the syntax of propositional logic by recursion over the datatype
of propositional formula. (See definition 15.) The time has now come to do
for predicate logic what we did then for propositional logic, namely provide a
recursive semantics. However, predicate logic is powerful and expressive, and it
is so similar to natural language in what it appears to be able to do, that a few
words of warning are in order about what it will not achieve.

A lot of semantics for natural languages is not recursive (or “compositional”
as the linguists say). There are various ways in which semantics can fail to
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be compositional. For example, people can use a distinctive vocabulary to an-
nounce affiliation to a linguistically defined community—at least in cases where
use of that vocabulary was avoidable, because then it represents a choice made
by the speaker. People engaged in sports discourse will signal this fact by calling
a good player of the game under discussion ‘useful’. Elsewhere ‘represents’ for
‘is’; ‘denotes’ for ‘is’; ‘propose’ for ‘suggest’ mark out the speaker as engaged in
scientific discourse, as in the following examples:

“Massif-type anorthosites are large igneous complexes of Proterozoic
age. They are almost monomineralic, representing [sic|] vast accu-
mulations of plagioclase ... the 930-Myr-old Rogaland anorthosite
province in Southwest Norway represents [sic] one of the youngest
known expressions of such magmatism.” (Nature, 405 p.781.)

To divide a number a by a number b means to find, if possible, a
number z such that bz = a. If such a number exists it is denoted
[sic] by a/b ... H. Davenport, the Higher Arithmetic)

The writers of these examples wished the texts to be read as pieces of scien-
tific discourse and signalled this by a nonstandard use of the flagged word. This
part of the author’s meaning is not conveyed by building up the meaning of the
compound sentence from the meaning of atomic subformula by recursion on the
structure of the language. Nevertheless the words still have some meaning that
is revealed compositionally. In contrast some words used in this way lack com-
positional semantics altogether: ‘elitist’ for example. This word is never used to
convey information about the matter under discussion, but only ever to stake a
claim by the speaker to be regarded as a person of progressive and egalitarian
views. There are certainly other ways in which words in natural language can
fail to have entirely compositional semantics and the transformational grammar
of Chomsky and his school is a systematic attempt to capture some of them, but
there is no need to explore them here: nonrecursive semantics is very hard to
analyse mathematically, and expressions of formal mathematical languages are
designed to yield up their meaning without being having to be deconstructed in
the ways illustrated above.

5.4.1 Truth and Satisfaction

In this section we develop the ideas of truth and validity (which we first saw in
the case of propositional logic) in the rather more complex setting of predicate
logic.

We are going to say what it is for a formula to be true in a structure. We
will achieve this by doing something rather more general. What we will give
is—for each language £—a definition of what it is for a formula of £ to be true
in a structure.

The first thing we need is the concept of a signature from page 41: for a
formula ¢ to have a prayer of being true in a structure 9, the signature of the
language that ¢ belongs to must be the same as the signature of 9t. It simply
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doesn’t make sense to ask whether or not the transitivity axiom (Vzyz)(z <
YAy < z. = x < z) is true in a structure that hasn’t got a binary relation in it.

First we need to decide what our domain of discourse, our carrier set, is
to be. Next we need the concept of an interpretation. This is a function
assigning to each predicate letter, function letter and constant in the language
of ¢ a subset of M", or a function M* — M, or element of M mutatis mutandis.
That is to say, to each syntactic device in the language of ¢, the interpretation
assigns a component of 90t of the appropriate arity. Let £ be the language of ¢.

For example, one can interpret the language of arithmetic by deter-
mining that the domain of discourse is to be IN, the set of natural
numbers, and that the interpretation of the symbol ‘<’ will be the
set of all pairs (z, y) of natural numbers where z is less than or equal
to y, and so on

(If this looks mysterious, it is probably because it really is as banal as
you first thought. The problem is that it is so banal that one tends to think
that something else must have been meant: one overinterprets. (see page 77.)
There is also the danger of misunderstanding this enterprise because one thinks
“What’s the point of telling me what ‘<’ means? I already know!”. The point
is that ‘<’ might have meant something quite different, and the story told here
will explain how it might have meant those other things. Put in another—more
compsci-ish—way, one could say that in predicate logic there are no reserved
words. Well, almost anyway. ‘=’ is usually taken to be a reserved word, and
is sometimes called a logical predicate letter (though the point is more usually
made by referring to all other predicate letters as “nonlogical”). What is meant
by this is that ‘=" must always be interpreted by equality. Models not respecting
this requirement are said to be nonstandard (though there are other ways in
which a model might be said to be nonstandard - this really belongs later) Of
course the quantifiers and connectives are usually taken to be reserved words as
well. (Usually but not always: one needs to reinterpret ‘=’ when showing that
Peirce’s law doesn’t follow from K and S: exercise 31))

At this stage (the stage at which we have equipped the language with an
interpretation) we know what the symbols mean, but not what the values of
the variables are. In other words, settling on an interpretation has enabled us
to the reach the position from which we started when doing propl logic. It’s
rather like the position we are in when contemplating a computer program but
not yet running it. When we run it we have a concept of instantaneous state of
the program: these states (snapshots) are allocations of values to the program
variables. Let’s formalise a concept of state.

A finite assignment function is a finite (partial) function from variables
in £ to M, the carrier set of 9. These will play a role analogous to the role of
valuations in propositional calculus. I have (see above) carefully arranged that
all our variables are orthographically of the form z; for some index i, so we can
think of our assignment function f as being defined either on variables or on
indices, since they are identical up to 1-1 correspondence. It is probably better



90 CHAPTER 5. PREDICATE CALCULUS

practice to think of the assignment functions as assigning elements of M to the
indices and write “f(i) = ... ”, since any notation that involved the actual
variables would invite confusion with the much more familiar “f(z;) = ... ”
where f would have to be a function defined on the things the variables range
over.

Next we define what it is for a partial assignment function to satisfy a sen-
tence p, (written “sat(f,p)”). We will do this by recursion on the rectype of
formulae, so naturally we define sat first of all on atomic sentences.

Notice that in

sat(f,x; = x;)

we have a relation between a function and an expression, not a relation between
f and z; and z;. That is to say that we wish to mention the variables (talk
about them) rather than use them (to talk about what they point to). This
contrast is referred to as the use-mention distinction.! This is usually made
clear by putting quotation marks of some kind round the expressions to make
it clear that we are mentioning them not using them. Now precisely what kind
of quotation mark is a good question. Our first clause will be something like

sat(f,'w; = ;) ity £(0) = £(§) (5.1)

But how like? Notice that, as it stands, it contains a name of the expression
which follows the next colon: z; = z;. Once we have put quotation marks round
this, the 7 and j have ceased to behave like variables (they were variables taking
indices as values) because quotation is a referentially opaque context.

A context is referentially opaque if two names for the same thing cannot
be permuted within it while preserving truth. Quotation is referentially opaque
because when we substitute one of the two names for Dr. Jekyll/Mr. Hyde for
the other in

‘Jekyll’ has six letters
we obtain the falsehood
‘Hyde’ has six letters

even though Jekyll and Hyde are the same person. The intuition behind the ter-
minology is that one cannot “see through” the quotation marks to the thing(s)
pointed to by the words ‘Jekyll’ and ‘Hyde’, so one cannot tell that they are
the same. There are other important contexts that are referentially opaque:
belief for example. I might have different beliefs about a single object when it
is identified by different names, and these beliefs might conflict.

But we still want the 4" and ‘5’ to be variables, because we want the content
of clause 5.4.1 to read, in English, something like: “for any variables 7 and j,
we will say that f satisfies the expression whose first and fourth letters are ‘z’,

1Tt has been said that the difference between logicians and mathematicians is that logicians
understand the use-mention distinction.
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4 )

whose third and fifth are i and j respectively and whose middle letter is ‘=’,
iff f(i) = f(j)”. Notice (and this is absolutely crucial) that in the piece of
quoted English text ‘z” and ‘=’ appear with single quotation marks round them
while ‘%’ and ‘j’ do not, and that formula 5.4.1 doesn’t capture this feature.
To correct this Quine invented a new notational device in Mathematical Logic
[1951], which he called “corners” and which are nowadays known as “Quine
quotes” (or “quasi-quotes”) which operate as follows: The expression after the
next colon:

Cp; = mj—l

being an occurrence of ‘z; = x;’ enclosed in Quine quotes is an expression which
does not, as it stands, name anything. However, ¢ and j are variables taking
integers as values, so that whenever we put constants (numerals) in place of
i and j it turns into an expression which will name the result of deleting the
quasi-quotes. This could also be put by calling it a variable name.

A good way to think of quasi quotes is not as a funny kind of quotation
mark, for quotation is referentially opaque and quasi quotation referentially
transparent, but rather as a kind of diacritic, not unlike the IATEX commands I
am using to write this book. Within a body of text enclosed by a pair of quasi
quotes, the symbols ‘A’ ‘V’ etc. do not have their normal function of composing
expressions but instead compose names of expressions. This also means that
Greek letters within the scope of quasi quotes are not dummies for expressions
or abbreviations of expressions but are variables that range over expressions (not
sets, or integers). Otherwise, if we think of them as a kind of funny quotation
mark, it is a bit disconcerting to find that, as Quine points out, "p is just
w (if p is an expression with no internal structure). The interested reader is
advised to read pages 33-37 of Quine’s Mathematical Logic where this device is
introduced.

It might have been easier to have a new suite of operators which combine
names of formule to get names of new formula so that, as it might be, putting
‘%’ between the names of two formulae gave us a name of the conjunction of the
two formulze. However, that uses up a whole font of characters, and it is more
economical, if not actually clearer, to use corners instead.

Once we’ve got that straight we can declare the following recursion, where
‘a’ and ‘B’ are variables taking expressions as values.

DEFINITION 25 First the base cases, for atomic fomule

sat(f,” x; = x;7) iff f() = f(j);
sat(f," z; € 1‘]‘—') iff (i) € £(5);

Then the inductive steps
if sat(f,a) and sat(f, ) then sat(f,"a A B7);
if sat(f,a) or sat(f,B) then sat(f,"a Vv 7);
if for no g D f does sat(g,a) hold then sat(f, ™ a™);
if there is some g O f such that sat(g," F(z;)") then sat(f,” (3z;)(F(xz;))™);
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if for every g O f with i € dom(g), sat(g,” F(z;)™) then sat(f,” (Vz;)(F(x;))7);

Then we say that ¢ is true in M, written M = ¢ iff sat(L, d), where L is
the empty partial assignment function. Finally a formula is valid iff it is true
in every interpretation.

Remember that this definition was for the toy language of Set theory. In
other cases the second clause will be replaced by a multiplicity of clauses—one
for each predicate.

Beware that 91 = 7 and T - A treat plurals on the right differently. The
first means that everything on the right is satisfied, the second means only
that something on the right is satisfied.

DEFINITION 26 Given a structure I we write Th(ON) for the theory of M:

{¢:M|= ¢}
If Th(O) = Th(M) we say that M and N are elementarily equivalent.

Examples: The reals as an ordered set and the rationals as an ordered set
are elementarily equivalent. (Don’t try to prove this just yet!) The reals as a
field and a rationals as a field are not. Why not? (In the reals every polynomial
of odd order has a root!)

If 99T and 9 are elementarily equivalent and 90 is a substructure of 9t we
say I is an elementary extension of 9 if the following extra condition is
satisfied: For all expressions ¢, MM = ¢(Z) «— N = ¢(Z). (Notice that because
¢ is allowed to contain free variables this is a much stronger condition than
elementary equivalence.)

Thus the reals as an ordered set are an elementary extension of the rationals
as an ordered set. As noted earlier, the reals as a field are not an elementary
extension of the rationals as a field.

EXERCISE 36 The assignment functions we have used have been partial, in
contrast to the valuations we used in propositional logic, which were total. How
do we have to modify definition 25 if we are to usse total assignment functions?

5.5 Completeness of the Predicate Calculus

Now that we know what it is for a formula to be true in a model, we have the
notion of a valid formula (one true in all interpretations) and we can now state
and prove the completeness theorem.

Theorem 27 A formula in the language of predicate calculus is deducible by
the sequent rules iff it is true in all interpretations.

The strategy is as follows. On being given a formula ¢, one examines all
possible proofs in the hope of finding a proof of ¢, in a systematic way that
ensures that if at the end of time one has failed to find a proof then the log of
one’s failed attempts results in a countermodel.
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The reader has by now constructed some sequent calculus proofs, and seen
how one builds a proof in the form of a tree, by backward search. Each node of
the tree is decorated by a sequent, and the leaves of the tree are decorated by
initial sequents. How does one build the tree? How does one know what to put
above a node that is decorated by a sequent that is not an initial sequent? For
a start, the root of the tree will be decorated by the sequent F ¢ where ¢ is the
formula we are trying to prove or find a countermodel for. Any sequent that
contains a molecular formula can be the result of applying one of the sequent
rules to one or more other sequents. If it contains more than one molecular
formula it can be obtained in more than one way. We guess which way will
be most fruitful and put the appropriate sequent(s) above it. For example the
sequent AV B + BV C can have been obtained by V-R from AV B + B,C
and by V-L from A F BV C together with B + BV C. So if, while we are
building a proof-tree, we confront a bud decorated with ‘AvV B + BV C’ we
can either put a bud above it decorated with ‘A Vv B + B,C’, or two buds, one
decorated with ‘A - BV C” and the other decorated with ‘B + BV C’. How do
we choose? It turns out that it doesn’t matter. What we will do is set up in
advance a rule that tells us which connectives to attack depending on how far
we are from the root of the proof tree under construction. (“If your distance
from the root is congruent to 7 mod 13 try to attack conjunctions-on-the-left; if
there are no conjunctions-on-the-left try disjunctions-on-the-right next, if there
are no disjunctions-on-the-right try ... On the other hand if your distance from
the root is congruent to 8 mod 13 try disjunctions-on-the-right ... ”)

Not surprisingly the cases where we do have to be very careful are the four
rules for the quantifiers. Let us take V-L as an illustration. It will become clear
that we will have to have an enumeration of the variables of our language, so
let us assume one from the outset. We are confronted by a sequent I' - A, and
we are resolved to attack all the formula in ' that are of the form ‘(Vz;)¢’. We
construct a sequent from which I' = A could have been derived by V-L as follows.
For each formula (Vz;)¢;(x;) in I let ‘a;’ be the first variable that we have not
already used to attack this formula, but which has appeared in a sequent nearer
to the root. Then we add all the formula ¢;(a;) to I' to obtain I'*. The desired
sequent to decorate the new bud is now I'* - A.

The approach to 3-R is exactly the same so let us investigate V-R. When
we attack I' F A we will add to A lots fo formulee ¢;(a;) corresponding to the
(Va;)¢i(x;) in A. This time the a; we use are those that have not appeared in
a sequent nearer to the root. Again, 3-L will invite the same approach.

When we have built our tree according to this process, one of two things will
happen. Either (i) every branch terminates with an initial sequent, in which
case we have a proof, or (ii) There is an infinite path through the tree.? In
case (ii) we will use the infinite path to construct a countermodel. For one
such infinite path, set ' to be the set of formule that appear on the left, and
A to be the set of formulae that appear on the right. We will build a model

2Tt might sound as if we need DC for this, but we can pick children of nodes uniformly
because the decorations come from a countable set.
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in which everything in I' is true and everything in A is false. The domain of
this model is the set of all the variables. For each n-ary predicate letter R we
determine whether or not an n-tuple (z; ...z,) belongs to the interpretation of
R by checking which of T or A contains R(zy ... xzp)

|

5.5.1 Applications of Completeness

This has been a very cursory teatment of completeness, and several significant
details have been omitted. One major topic that has not been covered is the
rule of cut: from the two sequents I' F A, ¢ and I'V,¢ = A’ infer the sequent
Tul” - AUA'. If one reads sequents not in the way I have been advocating but
instead as saying “if everything on the left is true then something on the right is
true” then this rule is clearly truth-preserving: if one inputs two true sequents
one obtains a true sequent as output. Nobody wants to have to use a proof
system which includes this rule: backward search using it gives rise to infinitely
many possibilities! Thus the fact that it is truth-preserving is very inconvenient:
we have to show that everything provable using it is provable without it.

Interpolation

There is a precise analogue in predicate calculus of the interpolation lemma for
propositional logic, and close attention to the details of the proof of the com-
pleteness theorem will enable us to prove it and get bounds on the complexity
of the interpolating formula. These bounds are not very good!

The interpolation lemma is probably the most appealing of the consequences
of the completeness theorem, since we have very strong intuitions about irrel-
evant information. Hume’s famous dictum that one cannot derive an “ought”
from an “is” certainly arises from this intuition. The same intuition is at work
in the hostility to the ex falso sequitur quodlibet that arises from time to time:
if there has to be a connection in meaning between the premisses and the con-

clusion, how can an empty premiss imply anything?

Skolemisation

Suppose we have a consistent theory T" and that it proves a theorem (Jz)y)(x).
Then, if 9t is a model of T', we can identify in 9t an element z in 991 such that
M = ¢(z) Suppose further that T proves a theorem (Vz)(Jy)d(x,y). Then, as
before, if 91 is a model of T', we can bolt onto 9t a function that, to every x
in 9N, assigns a y such that M = ¢(z,y). The model that results from bolting
this function onto 9 is an expansion of M (see page 10), and the language for
which it is a structure is of course an expansion of £(T), the language of T.
Of course we can do this expansion simultaneously for all ¢ such that 7" proves
(Vz)(Jy)é(x,y), and adjoin lots of new function letters to L£(T) in so doing.
We can also add, for each 1 such that T'F (3z)¢(x) constant symbols to point
to something that is 1. This process of adding function letters and constant
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symbols is called Skolemisation. The functions denoted in a model by the new
function letters are Skolem functions. The constants are Skolem constants.
Whenever we add Skolem functions and constants to a model we can consider
the rectype whose founders are the Skolem constants and whose constructors are
the Skolem functions. These substructures are natural and important objects.

EXERCISE 37 The Downward Skolem-Lowenheim theorem.
Let T be a theory in a countable language L. Use Skolem functions to prove
that T' has a countable model.

5.6 Back and Forth

The theory of dense linear order has one primitive nonlogical symbol < and the
following axioms:

Vayz(z <y = (y <z = (x < 2)));

Vez(z <y sy <z —z=y);

Veydz(z <y — (x < z Az <y));

VrIy(y > z);

Vzdy(z > y);

Voy(z <y Vy < o).

Theorem 28 All countable dense linear orders without endpoints are isomor-
phic.

Proof: 1 shall provide a proof because it is possible to prove the theorem the
wrong way.

Suppose we have two countable dense linear orders without endpoints, (A, <)
and (B, <p). They are both countable, so the elements of A can be enumerated
as (a; : i € IN) and the elements of B can be enumerated as (b; : i € IN).

We start by pairing off ag with by. Thereafter we procede by induction.
At each stage we have paired off some things in (A, <4) with some things in
(B, <p). Let us now consider the first thing in (4, <4) not already paired off.
(We mean: first in the sense of (a; : i € IN).) This lies between two things we
have already paired, and we must find a mate for it in (B,<g) that lies in
the interval between their mates. Since the ordering is dense, this interval is
nonempty, and we pick for its mate the first (in the sense of the (b; : i € IN)) in
it.

Now we consider the first thing (in the sense of the enumeration we have
chosen) in (B, <p) not already paired off. This lies between two things we have
already paired, and we must find a mate for it in (4, < 4) that lies in the interval
between their mates. Since the ordering is dense, this interval is nonempty, and
we pick for its mate the first (in the sense of the enumeration) in it.

That is the recursive step we use to build the bijection. It goes back and
forth: (A, <a) to (B,<p) and then (B, <p) to (A, <4). That way we can be
sure that by the time we have gone back-and-forth n times we have used up
the first n things in the canonical enumeration of (A, < 4) and the first n things
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Figure 5.1: There is only one countable dense total order without endpoints

in the canonical enumeration of (A, <4). We will have used n other things as
well on each side, but we have no control over how late or early they are in the
canonical orderings.
The union of all the finite partial bijections we thus construct is an isomor-
phism between (A, <) and (B, <g).
|

Note that this construction shows that the group of order-automorphisms of
the rationals acts transitively on unordered n-tuples.

Theorem 28 tells us that the theory of dense linear orders without endpoints
is complete. Suppose it were not. Then there would be a formula ¢ which
is undecided by it, and by the completeness theorem there would be dense
linear orders without endpoints which were ¢ and dense linear orders without
endpoints which were not ¢. But then these dense linear orders would not be
elementarily equivalent, and a fortiori not isomorphic either.

The study of countable structures that are unique up to isomorphism is
a pastime widespread among logicians, and has interesting ramifications. Such
structures are said to be countably categorical. Although this is a misnomer,
it has stuck. It is theories that are k-categorical. A theory is k-categorical iff it
has—up to isomorphism—precisely one model of size k. There is a remarkable
and deep theorem of Morley that says that a theory that is k-categorical for even
one uncountable k is k-categorical for all uncountable . It is beyond the scope
of this book. However there are a number of natural and important countably
categorical theories, and they make good exercises.

5.6.1 Exercises on back-and-forth constructions

1. Take two countable dense linear orders without endpoints. (For example
two copies of the rationals considered as a ordered set.) In both copies
paint each point red or blue so that any two red points have a blue point
between them and any two blue points have a red point between them.
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Prove that there is an order-isomorphism between the two copies which
respects the colouring.

The significance of this example is that it is the simplest example of a
countably categorical structure whose categoricity has to be proved by
a back-and-forth argument and not merely by a “forth” argument.® It
seems to be an open question whether or not the countably categorical
structures whose uniqueness can be proved by a “forth” construction only
is a natural class in any other way.

. Some graph theory. (You do not need any results from graph theory to

do this). Let A, be the assertion that if X and Y are disjoint sets of
vertices both of cardinality at most n, then there is a vertex x not in
X UY joined to every member of X and to no member of Y. Prove that
any two countable graphs satisfying A,, for each finite n are isomorphic.

. What is the smallest (nontrivial, i.e., at least two members) graph satis-

fying A;? (easy).

. What does this tell you about the relationship between the A, and an

arbitrary sentence in the language of graph theory? (see hint for Q1)

. Any two countable atomless boolean algebras are isomorphic.

. A countable atomic boolean algebra is saturated if every element domi-

nating infinitely many atoms is the sup of two elements dominating two
disjoint infinite sets of atoms. Prove that any two countable saturated
atomic boolean algebras are isomorphic. (It’s easy with the hint: show
that this condition is equivalent to the requirement that the quotient mod-
ulo the ideal of finite elements is atomless.)

. (The model companion of ZF~). Let y(z,y1 - - .yn) be a finite conjunction

of some of the following atomic formulas and their negations: = € z; z € y;
(1 <n);and y; € z (i <n). We define the theory T as follows. If

N wvi#uinz #yiny(z oy yn)
1<i<j<n

is satisfiable then

V)@ N\ viFui—= N\ v A v Ay yn)]

1<i<j<n 1<i<n

is an axiom of T.

Prove that 7" is countably categorical.

3T am endebted to Peter Cameron for pointing this out to me.
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5.7 Ultraproducts and Lo$’s theorem

Let T be a first-order theory. Clearly if every finitely axiomatised subsystem
of T has a model, then every finitely axiomatised subsystem of T is consistent.
This tells us that T itself is consistent (by compactness) and thus that T itself
has a model, by the completeness theorem. Thus we have successfully negotiated
our way from the bottom left of the following diagram to the bottom right:

Every finite subset of T is consistent — 7' is consistent

Every finite subset of 7" has a model T has a model

We’ve inferred that T has a model from the news that all its finite subsets
have models, but our proof has involved something very like a détour through
syntax. In the spirit of the interpolation lemma one might expect that there
should be an operation that will accept a set of models and output a model, so
that we can feed it models of finite subsets of 7" and obtain models of T'.

There certainly are constructions that accept sets of models and output
(single) models: recall that [],.;.A; is the direct (sometimes called Cartesian)
product of the A;.

If {A;:i€I}is afamily of structures, we define the product

I

i€l

icl

to be the structure whose domain is the set of all functions f defined on the
index set I such that (Vi € I)(f(i) € A;) and the relations of the language are
interpreted by R(f, g) iff (Vi € I)(R(f(i),g(:))). The {A; : i € I} are said to be
the factors of the product [, ; A;

For this operation to make sense it is of course necessary that all the A;
should have the same signature! (see page 41).

Products are nice in various ways. They preserve Horn sentences. What do
we mean by “preserve”?

DEFINITION 29 LetT be a class of formule. Products preserve I' if whenever
[L;cr Ai is a product of a family {A; :i € I} and ¢ € T then [[,c; Ai = ¢ iff
(Vi € I)(A; = ¢). In these circumstances we also say that ¢ is preserved, when
pel.

By definition of product, products preserve atomic formulee. Clearly they
also preserve conjunctions of anything they preserve, and similarly universal

quantifications over things they preserve.

EXERCISE 38 Verify that products preserve Horn formule
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(This was proved by a man named ‘Horn’!) However they do not always
preserve formula containing V or —. How so? If ¢ is preserved, then the
product will fail to satisfy it if even one of the factors does not satisfy it but
all the rest do. In these circumstances the product |= —¢ but it is not the case
that all the factors = —¢. As for V, if ¢ and ¢ are preserved, it can happen
that ¢ V ¢ is not, as follows. If half the factors satisfy ¢ and half satisfy v,
then they all satisfy ¢ V ¢. Now the product will satisfy ¢ Vv ¢ iff it satisfies
one of them. But in order to satisfy one of them, that one must be true at all
the factors, and by hypothesis it is not. Something similar happens with the
existential quantifier.

Given a filter F' over the index set, we can define f ~r g on elements of the
product if {i € I : f(i) = g(i)} € F. This equivalence relation is a congruence
relation for all the operations and relations that the product aquires from the
factors. At this point it is customary to take a quotient by this congruence
relation and call this structure a reduced product. This new structure has
a different carrier set from the product, but the interpretation of ‘=’ in it is
indeed equality. It is possible to keep the same carrier set and obtain much of
the effect of “reducing” by ~p by taking the interpretation of ‘=" in the new
structure to be ~p. Models in which the interpretation of ‘=’ is anything other
equality are often said to be nonstandard.

Then we either take this ~p to be the interpretation of ‘=’ in the new
product we are defining, keeping the elements of the domain of the new product
the same as the elements of the old or we take the elements of the new structure
to be equivalence classes of functions under ~. These we will write [g]~, or
[g] if there is no ambiguity. Whichever way you prefer to look at it ~p is a
congruence relation on [[;c; A;.

This new object is denoted by the following expression:

([ A/F

i€l

)

Similarly we have to revise our interpretation of atomic formulae so that

(T A)/F = R(f.9) iff {i: R(f(i),9(i)} € F.

icl

The reason for proceeding from products to reduced products was to com-
plicate the structure and hope to get more things preserved. In fact nothing
exciting happens (we still have the same trouble with V and —) unless the filter
we use is ultra. Then everything comes right.

Theorem 30 ( Los’s theorem )
Let U be an ultrafilter C P(I). For all first-order expressions ¢,

(AU EGiff {i: A =gt eU

i€l
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Proof: We do this by structural induction on the rectype of formula. For atomic
formula it is immediate from the definitions.

As we would expect, the only hard work comes with = and V, though 3
merits comment as well.

Disjunction

Suppose we know that ([[;c; A)/U | ¢ iff {i : A & ¢} e U
and ([[;c; A)/U = ¢ iff {i : A; =} € U. We want to show
(ILier AU E (V) iff {i: Ai = oV} eld.
The steps in the following manipulation will be reversible. Suppose
([[AuEevy
il
Then
J[AVuES or (JTANUEY
icl iel
By induction hypothesis, this is equivalent to
{i:AiEQeU or {i: A E}YEU
and either of these implies
{i:AiEoVY}eU

Now {i: Ail=oVe}is{i: A E o} U{i: A; E v} Now we make
use of the ultra-ness of U: for all A and B it contains A U B iff it
contains at least one of A and B, which enables us to reverse the
last implication.

Negation

We assume ([T, Ai)/U | ¢ iff {i : A; |= ¢} € U, and wish to infer
(ILier A)/U E = iff {i: Ai =~} € U.
Suppose ([];c; Ai)/U = ~¢. That is to say

(] A/ 6

iel

By induction hypothesis this is equivalent to

{i:AiEot¢U

But, since U is ultra, it must contain I' or I\ I’ for any I' C I, so
this last line is equivalent to

{i: A =0} €U

as desired.
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Existential quantifier

The step for 3 is also nontrivial ...

([T A /U = 3z

i€l

3F(JT AU = o)

el
Af{iel:AilEo(f(i)} el

. and here we use the axiom of choice to pick a witness at each
factor

{iel: A EJxp(x)} el

If all the factors are the same the ultraproduct is called an ultrapower. We
write AX /U where K is a set and I an ultrafilter on K.

Theorem 31 The embedding i = Am, .(Afy,. ,,-m) is elementary.

Proof:

Of course we have to do this by structural induction on formulag, but the
only hard case is the existential quantifier, and even that is hard in only one
direction. After all, if 9 |= (3z)(¢(z)) then i of any witness will satisfy ¢ in the
ultraproduct. So it will be sufficient to show that, for any m € 9, if there is an
x € M" /U such that M" /U |= ¢(z,i(m)) then thereis z € M s.t. M = d(x, m).
Consider such an z € IM*/U.

It is the equivalence class [f]y of a family of functions f such that {a < & :
é(f(a),m)} € U. But then this thing in 9 that is f(a) will serve as the witness
in 9.

|

Ultraproducts were sold to you a few pages ago as a device that would show
that if every finite subset of a theory T has a model, so does T. We’d better
make this promise good.

Suppose T is a theory (with countably many axioms) such that every finite
set of its axioms has a model. Let A; be a model of the first 7 axioms of T, and
let ¢ be a nonprincipal ultrafilter on IN. Then the ultraproduct ([[,c; A:)/U is
a model of T'. (as long as U is nonprincipal of course! see exercise 24). This has
the incredibly useful corollary that

COROLLARY 32 A formula is equivalent to a first-order formula iff the class
of its models is closed under taking ultraproducts.

EXERCISE 39 Use ultraproducts to show that wellfoundedness is not a first-
order property.
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The effect of the ultraproduct construction is to add lots of things whose
presence cannot be detected by finitistic first-order methods. An important
effect of this is a direct proof of

Theorem 33 (Upward Skolem-Léwenheim theorem)
Every consistent theory with an infinite model has arbitrarily large models.

Proof: We can prove this by appealing to the completeness theorem. If T is
a consistent theory with an infinite model add to the language of 7" as many
constant symbols as you please, and add to T axioms saying that all these
constants are distinct. The compactness theorem for predicate logic ensures
that this new theory is consistent and the completeness theorem for predicate
logic proves that it has a model.

However we can instead prove it directly using ultraproducts. Let 91 be a
model of T', K an index set of cardinality « a cardinal as large as you please, U
an ultrafilter on K. 9 /U is then elementarily equivalent to 9% and is large.
How large? Well, an element of 9t% /I{ is an equivalence class of functions from
K to M. To show that there are lots of equivalence classes we must show that
there are large families of functions that pairwise disagree on a set in &/. But for
each address in K we can pick M-many things and this gives us x independent
choices of things from M, so there are (size of M)* functions which pairwise
differ everywhere. This size is certainly at least as big as k.

|

Theorem 33 can be strengthened to assert that every theory with an infinite
model has models of all larger sizes.

5.7.1 Further applications of ultraproducts
Keisler’s ultrapower lemma

Keisler’s ultrapower lemma connects logic and algebra. It says that if two
structures M and N are elementarily equivalent then they have ultrapowers '
and 9 that are isomorphic.

Nonstandard models of arithmtic

In an ultrapower of the reals one finds elements like the equivalence class of the
function An.(1/n). This is clearly an infinitesimal: it is everywhere bigger than
0 and, for each n, eventually less than 1/n. This enables us to do something
the 18th century wanted to do but couldn’t, namely do differential and integral
calculus using infinitesimals, and do it rigorously. Presenting Analysis in this
way hasn’t yet caught on, but it well might.*

4If you want to pursue this point, seek out a copy of: Keisler op cit.
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5.8 Exercises on compactness and ultraproducts

1. Write down first order axioms for the theory of fields. Show that if a
first-order statement is true in all fields of characteristic zero, then it is
true in all fields of sufficiently large characteristic.

2. Write down the axioms for an ordered field (essentially the axioms for
the reals without the crucial completeness axiom). An ordered field is
archimedean just when for every x > 0 there is n € IN with z + 2 + 2 +
x4+ x...(n times) > 1. Show that there exist non-archimedean ordered
fields.

3. Show that if &4 C P(I) is the principal ultrafilter generated by j then

(T Ai/u ~ 4;.

i€l

An essay-sized Paper 4-style question

A pedigree is a set P with two unary total functions f amd m defined on it,
with disjoint ranges. (m(z) is z’s mother and f(x) is 2’s father).

(i) Set up a first-order language £ for pedigrees and provide axioms
for a theory T} of pedigrees.

A pedigree may be circle-free: in a realistic pedigree no-one is their own
ancestor! Realistic pedigrees are also locally finite: no-one is the father or
mother of infinitely many things.

(ii) One of these two new properties is first order and the other
isn’t. Give axioms for a theory T3 of the one that is first-order and
an explanation of why the other one isn’t.

A fitness function is a map v from P to the reals satisfying v(z) = (1/2) -
Yty)=v(y) or v(x) = (1/2) - By (y)=2v(y) (depending on whether z is a mother
or a father).

(iii) Find a sufficient condition for a pedigree to have a nontrivial
fitness function, and a sufficient condition for it to have no nontrivial
fitness funtion.

(iv) Extend your language £ to include syntax for v. In your new
language provide axioms for a new theory 75 which is to be a conser-
vative extension of 77 and whose locally finite models are precisely
the locally finite pedigrees with a nontrivial fitness function.

There is an obvious concept of generation for a pedigree.
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(v) Expand £ by adding new predicate(s), and give a first-order the-
ory in this new language for pedigrees that have well-defined gener-
ations. Give first-order axioms in L itself for a theory of pedigrees
that have well-defined generations.

(vi) When can one make sense of the idea of the fitness of an entire
generation? How can fitness change from one generation to the next?

(vii) Add axioms to your theory of pedigrees admitting-a-concept-
of-generation to obtain an Ng-categorical theory.



Chapter 6

Computable Functions

Hilbert’s 1900 address set a number of tasks whose successful completion would
inevitably involve more formalisation. It seems fairly clear that this was delib-
erate: Hilbert certainly believed that if formalisation was pursued thoroughly
and done properly then all the contradictions that were crawling out of the
woodwork at that time could be dealt with once and for all.

One of the tasks was to find a method for solving all diophantine equations.
What does this mean exactly? For example, it is easy to check that for any two
naturals a and b

(a2 _ b2)2 + (2ab)2 — (a2 + b2)2

and so there are infinitely many integer solutions to 22 4+ y? = 22. Indeed we
can even show that every solution to the pythagorean equation (at least every
solution where z, y and z have no common factor) arises in this way:

Notice that if 22 + y? = 22 then z is odd and precisely one of x and y is
even. (We are assuming no common factors!) Let us take y to be the even one
and x the odd one.

Evidently 22 = (2 — y)(z + y) and let d be the hcf of 2 — y and 2z +y. Then
there are coprime a and b satisfying z + y = ad and z — y = bd. So z% = abd>.
This can happen only if @ and b are perfect squares, say u? and v respectively.
So z = uvd.

This gives us z = "2;”2 dandy = "2;”2 .d and in fact d turns out to be 2.

Hilbert’s question—and it is a natural one—was: can we clean up all dio-
phantine equations in the way we have just cleaned up this one?

If there is a general method for solving diophantine equations, then we have
the possibility of finding it. If we find it, we exhibit it, and we’re done. To
be slightly more specific, we have a proof that says “Let E be a diophantine
equation, then ... ”, using the rule of universal generalisation (UG).

On the other hand, if there is no such general method, what are we to do?
Merely gesticulating despairingly in front of hard cases will not persuade anyone
that those cases cannot be solved. We would have to say something like: let
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2 be an arbitrary algorithm, we will show that there is a diophantine equation
that 2 doesn’t solve. But clearly, in order to do this, we must have a formal
concept of an algorithm. Hilbert’s challenge was to find one.

There are various formal versions of computation. We saw finite state ma-
chines earlier, and we saw how the set of strings recognised by a machine gives
rise to a concept of computable set. However we also saw a fatal drawback to
any analysis of computable set in terms of finite state machines: the matching
bracket language is not recognised by any finite state machine but is obvious
computable in some sense. The problem arises because each finite state machine
has a number of states (or amount of memory, to put it another way) that is
fixed permanently in advance. The most general kind of computation that we
can imagine that we would consider to be computation is deterministic, finite
in time and memory but unbounded: no predetermined limit on the amount of
time or memory used. There have been various attempts to capture this idea
in machinery rigorous enough for one to prove facts about it. The (historically)
first of the most general versions is Turing machines. There’s also representabil-
ity by A-terms. This is a rich and fascinating branch of logic which we cannot
treat here: there is too much of it and there are many elegant treatments in
print. Another attempt is p-recursion which we will do in detail below.

What became clear about 60 years ago is that all attempts to formalise
the maximal idea of a computable function result in the same class of func-
tions. This gives rise to Church’s thesis. Although not normally presented as
such, Church’s thesis is really just a claim that this endeavour to illuminate—
by formalisation—our intuitive idea of a computable function has now been
completed: we will never need another notion of computable.

How can we be so confident? Well, we have a completeness theorem. All com-
pleteness theorems have two legs: a semantic concept and a syntactic concept.
The semantic concept in this case is turing-computable or register machine-
computable. The syntactic concept is a bit harder. The first attempt at it
is primitive recursive; we will discover the correct syntactical concept by
examining what goes wrong with primitive recursive functions.

6.1 Primitive recursive functions

DEFINITION 34 The rectype of primitive recursive functions is the C-
least class of functions containing the initial functions which are

The successor function: An.n + 1, written S;

The zero function An.0, and

The projection functions: proj)* accepts an m-tuple and returns
its nth entry;

and closed under composition and Primitive recursion:

f(2,0):=g(2); [T S)) :=hZ,y, [(T,y)) (6.1)
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We say f is declared by primitive recursion over g and h. Notice that although
there is no limit on the number of variables we can compute with, we only recurse
on one.

[HOLE Explain composition: it’s fiddly. Same as composition of terms page
41 clause 5. Specifically if Axy.f(x,y) is a primitive recursive function of two
variables, then Az.f(x,z) is a primitive recursive function of one variable]

Strictly what we have here is a rectype of function declarations rather than
functions. We will think of function declarations as a kind of function-in-
intension and will consider a function(-in-extension) to be primitive recursive if
it has a primitive recursive declaration (as a function-in-intension).

Note at the outset that this datatype of function declarations is countably
presented (see section 2.1.6) and so has only countably many elements.

The basic functions are in some obscure but uncontroversial sense com-
putable; clearly the composition of two computable functions is computable,
and if g and h are in some sense computable then f declared over them by
primitive recursion is going to be computable in the same sense. That is why
this definition is prima facie at least a halfway-sensible stab at a definition of
computable function.

We adopt the habit of bundling together all the snail variables (the one you
just carry around and don’t recurse on) in the style .

We need ‘y’ in the right hand side of the second clause of definition 6.1
because otherwise if it should ever happen that there are n and k such that
f(&n) = f(& k) we will have f(&,n+ 1) = f(&,k+ 1) and An.f(Z,n) will be
periodic.

Here are some declarations:

(i) Predecessor: P(0) :=0; P(S(z)) := =

(ii) Bounded subtraction: z:0 := x; z-S(y) := P(z:y)
(iii) Addition: z 4+ 0:==z; z + S(y) := S(x + y)

(iv) Multiplication: z-0:=0; z-(S(y)) :== (z-y) + z.

EXERCISE 40 Show that if f is primitive recursive so are (i) the function that
returns the sum of the first n values of f;
(1) the function that returns the product of the first n values of f.

Primitive recursive predicates and relations

A predicate R(Z) is a primitive recursive predicate (or relation) iff there is
a primitive recursive function r s.t. r(#) = 0 +— R(Z). We can take 1 to be
true and 0 to be false or vice versa or 0 to be true and all other values to be
false—it doesn’t matter as long as one is consistent. In what follows true is 1.

EXERCISE 41 Show that < is a primitive recursive relation.
If R and S are primitive recursive predicates represented by r and s then

=R is represented by 1-r;
R A S is represented by 7 - s;
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RV S is represented by r + s:(r - s);
(Fz < z)(R(z,¥)) is represented by

I rea.

0<z<z

Bounded universal quantification similarly. (use duality of the quantifiers)

The set of primitive recursive functions is also closed under if then else, in
the sense that if r is a primitive recursive predicate then if R then x else y
is also primitive recursive. Here’s why. Declare

if-then-else(z,y,0) := x; if-then-else(z,y,S(n)):=y.

if-then-else is evidently primitive recursive, and it is mechanical to check
that

evaluates to z if r =1 and to y if r = 0.
Putting this together with the fact that bounded quantification is primitive
recursive tells us that functions declared in the style

if (3z <y)R(x) then f(z) else g(x).

are primitive recursive, as long as R, f and g are. This is bounded search.
Hofstader in Gédel, Escher Bach memorably calls this “BLOOP”.

The order relation on the rectype IN is its engendering relation, the tran-
sitive closure of the constructor S. This motivates very sweetly the restricted
quantifiers that we have just considered. Before we leave this digression about
bounded quantification we must make the point that bounded quantifiers give
us an analogue of the Prenex Normal Form theorem.

EXERCISE 42 Show that any expression in the language of arithmetic is equiv-
alent to one in which all the bounded quantifiers are within the scope of all the
unbounded quantifiers. (You may take pairing and unpairing operations to be
primitive operations)

hint: the only hard part is dealing with (forallz < y)(3k)
In the following questions you may assume that pair represents a primitive
recursive bijection IN> — IN. The following is a standard example:

pair(z,y) = (*/2) - (2% + y* + 3z + y + 2zy)

and fst and snd the corresponding primitive recursive unpairing functions,
(so that fst(pair(m,n)) = m, snd(pair(m,n)) = n and pair(fst(r),snd(r)) =
).

EXERCISE 43 .

1. The declaration:
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Fib(n 4 2) := Fib(n + 1)4+Fib(n); Fib(1) := 1; Fib(0) := 1.

isn’t primitive recursive. Find a declaration of this function that is prim-
itive recursive.

2. The iterate It(f) of f is defined by: It(f)(m,n) = f™(n). Notice that
even if f is a primitive recursive function of one argument this function
of two arguments is not prima facie primitive recursive. Show that it is
primitive recursive nevertheless.

Take T to be the inductively defined class of functions containing the suc-
cessor function S(n) = n + 1, the functions pair, £st, snd and closed
under composition and iteration. Show that if a € N and G(x,y) is in T
and H(x) is defined by

H(0)=a

H(n+1)=G(H(n),n),

then H(z) is in Z. [Hint: Consider pair(H (y),y)./

EXERCISE 44 Show that all primitive recursive functions are total by induc-
tion on the rectype. The induction step for primitive recursion uses induction
over IN.

This means that functions like that which returns n when given 2n and
fails on odd numbers is not primitive recursive. Nevertheless you will often
hear people say—as I say to you now—that you would be extremely unlucky
to encounter computable functions that are not primitive recursive unless you
are a logician and go out of your way to look for trouble. The resolution of
this apparent contradiction is that the function An.(ifn = 2kthenkelse fail)
is in some sense coded by the primitive recursive function which sends 2n + 1
to 0 (meaning fail) and sends 2n to n + 1 (meaning n)—and this function is
primitive recursive.

6.2 pu-recursion

Does the datatype of primitive recursive functions exhaust the class of (total)
functions that reasonable people would consider computable? Let’s see:

DEFINITION 35 Ackermann function:

AQ0,y) ==y + 1 Az +1,0) := A(z,1); Az +Ly+1):= Az, Az + 1,y))
DEFINITION 36 f dominates g if for all sufficiently large n, f(n) > g(n).

EXERCISE 45 For every primitive recursive function f(Z,n) there is a con-
stant cy such that

(VnVE)(f(Z,n) < A(cy, maz(n, T)))

(In slang, every primitive recursive function is in O(Ackermann).)
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(Hint: use induction on the rectype of primitive recursive functions)

EXERCISE 46 For enthusiasts only” When you are satisfied with your an-
swer to exercise 45—and you should be!—try what follows:

1. Write out a definition of a constructor of double recursion so that you
now have a rectype of doubly recursive functions. (Do not worry unduly
about how comprehensive your definition is).

2. What would a ternary Ackermann function be? Prove that the ternary
Ackermann function you have defined dominates all doubly recursive func-
tions in the manner of your proof of exercise 45.

COROLLARY 37 The Ackermann function is therefore not primitive recur-
sive.

... but it is still total!
REMARK 38 A(n,m) is defined for all n,m € IN

Proof:

We need to recall that the lexicographic product IN x IN is a wellorder. This
means that we can do wellfounded induction on it. Let (z,y) be minimal in the
lexicographic order of IN x IN such that A(z,y) is undefined. It doesn’t take
long to check that y and x must both be nonzero. But in these circumstances
A(z,y) := A(x — 1, A(z,y — 1)). Now the pair (z,y — 1) is below (z,y) in the
lexicographic order of IN x IN so A(z,y — 1) is defined, so we can use the fact
that (z — 1, A(z,y — 1)) is below (z,y) in the lexicographic order of IN x IN to
infer that A(z —1, A(z,y — 1)) must be defined (since (z,y) was minimal in the
lexicographic order of IN x IN such that A(y, z) is undefined!) So A(z,y) (which
is A(x — 1, A(z,y — 1))) is defined after alll Contradiction. [ |

The Ackermann function involves recursion on two variables in a way that
cannot be disentangled. The point of exercise 46 is that there is also treble
recursion and so on. A function is n-recursive if it is declared by a recursion
involving n entangled variables. Exercise 46 invites you to prove analogues for
each n of the facts we have proved about the Ackermann function, namely: for
every n there are functions that are n recursive but not n — l-recursive, and
one can prove their totality by a wellfounded induction over the lexicographic
product IN". Is every total computable function n-recursive for some n? No
it isn’t, but I shall not give a proof. It turns out that the correct response to
the news brought by the Ackermann function that not every total computable
function is primitive recursive is not to pursue 2-recursive, 3-recursive and so
on but rather to abandon altogether the idea that computable functions have
to be total in order to be computable. For a sensible general theory we need

! Then why put it in!? Because it makes a point I shall need to allude to later: read it but
don’t do it.
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to consider partial functions.? This is because we want unbounded search®

to be allowed. The new gadget we need is p-recursion, which corresponds to
unbounded search. This is a sensible new constructor to reach for because
any strategy for computing g will give rise to a strategy for computing g~':
simply try g with successively increasing inputs starting at 0 and continue until
you get the answer you want—if you ever do. The point is that if we have
a deterministic procedure for getting values of g we will have a deterministic

procedure for getting values of g—!.

So we augment the constructors of the rectype of primi-
tive recursive functions by allowing ourselves to declare f
by f(n,Z) := (uy)(9(y,Z) = n), once given g. Then uy.® is
the least y such that & (if there is one) and is undefined
otherwise.

(Notice that the even with this new constructor the rectype of p-recursive
functions is still countably presented)

But there is a catch to this. The unbounded search constructor preserves
computability as long as its argument is a total function, but the inverse function
that it gives us is not guaranteed to be total itself! Think about inverting
An.2n. The result is a function that divides even numbers by 2 and fails on odd
numbers. No problem there. For the moment let f be the function that divides
even numbers by two and fails on odd numbers. The problem arises if we try to
invert f: how do we ever discover what f~!(3) is? It ought to be 6 of course,
but if we approach it by computing f(0), f(1) etc., we get stuck because the
endeavour to compute f(1) launches us on a wild goose chase. We could guess
that the way to compute f~1(3) is to try computing f(6) but we don’t want to
even think about nondeterminism, because this severs our chain to the anchor
of tangibility which was the motivation for thinking about computability in the
first place.

The upshot is that we cannot rely on being able to iterate inversion, and
we cannot just close the set of primitive recursive functions under the old con-
structors and this new one, and expect to get a sensible answer. As the An.2n
example shows, FLOOP might output a function that you cannot then FLOOP.
Nor can we escape by doctoring the datatype declaration so that we are allowed
to apply inversion only to functions satisfying conditions which—like totality—
are ascertainable solely at run-time. That would not be sensible.*

20n page 109 we encountered a naturally occurring computable partial function that wasn’t
really partial because there was a computable total function that in some sense encoded the
same information. When I write that we must embrace partial functions I mean we must
embrace even those partial functions that cannot be coded as total function in the way division
by 2 can.

3Godel Escher Bach fans might be helped by a reminder that Hofstader calls unbounded
search FLOOP (as opposed to BLOOP which is bounded search).

41t is true that one can obtain a declaration of the p-recursive functions as a rectype by
simply adding to the constructors for the primitive recursive functions the declaration:

If ¢(Z,y) is a total p-recursive predicate then f(Z) := (uy)(¢(Z,y) = 0) is a
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Fortunately it will turn out that any function that we could define by more
than one inversion can always be defined by only one.’ I am going to leave the
precise definition of u-recursive up in the air for the moment. We will discover
what it is by attempting to prove the theorem that a function is u-recursive iff
it is computable by a Turing machine (or register machine or any of the other
paradigmatic architectures).

At first blush it seems odd to formalise computability in such a way that
a function can be computable but undefined, but this liberalisation is the key
that unlocks computation theory. Perhaps on reflection it isn’t so odd after all:
all of us who have ever written any code at all know perfectly well that the
everywhere undefined function is computable—since we have all inadvertently
written code that computes it!

Specifically this enables us to connect syntactic concepts of computability—
function declarations—to semantic concepts: computability by machines, to
which we now turn.

6.3 Meachines

A register machine has

(i) finitely many registers R; ... R, each of which holds a natural
number; and

(ii) A program which is a finite list of instructions each of which
consists of a label and a body. Labels are natural numbers, and a
body has one of the three forms:

1. RT — L: add 1 to contents of register R and jump to intruction
with label L.

2. R~ — L', L": if contents of R is nonzero, subtract one from it

and jump to instruction with label L', o/w jump to instruction
with label L".

3. HALT!

The output of the register machine is the contents of register 1 (say!) when
the machine executes a HALT command. Notice that we don’t really specify the
number of registers by stipulation but only indirectly by mentioning registers
in the instructions in the program. If the program has only 10 lines it cannot
mention more than 10 registers and so the machine can be taken to have only
10 registers.

p-recursive function.

and some writers do this, but this is philosophically distasteful for the reasons given: it makes
for a less abstract definition.

5Unfortunately this isn’t proved by exhibiting an algorithm for eliminating extra inversions:
it’s less direct than that.
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We say that a register machine 9t computes a function f iff: for all n € IN,
f(n) is defined iff whenever we run 9 starting with n in register 1 it halts with
f(n) in register 1, and does not halt otherwise.

Very important that the register machines can be effectively enumerated.
Deeply unimportant how we do this, though one can collect a few hints.5

Recall the discussion on page 35. The prime powers trick lets us code lists
of numbers as numbers. If we do this the usual list-processing functions head,
tail and cons will be primitive recursive. Although it’s simultaneously very
important that the register machines can be effectively enumerated and deeply
unimportant how we do this, there is one fact about how we do it that we will
need, and that is that the map from numbers to machines should be recursive in
some sense. We can describe a machine completely in a specification language of
some kind, because a machine is after all a finite object, and it will have a finite
description, and we can have a standardised uniform way of way of presenting
these descriptions. The specification language can be written in an alphabet
with perhaps 50 characters (alphanumerics and punctuation), so if we identify
a machine with its description in the language it can be thought of as a numeral
to base 50. This numeral won’t just be a name of the machine, but an actual
description of it.

IN is a rectype, and so is the set of machine descriptions in the specification
language. The gnumbering function given is nice in the sense that it is a rectype
homomorphism.

If a formula is a list of symbols we can define a Gédel enumeration of formula
by list-recursion as shown in the following ML pseudocode. The gnumber of a
formula is a number to base 256 (because ASCII codes are numbers below 256!)

ASCII of h
256*gnumber (t) + gnumber (h) ;

gnumber h::[ ]
| h:: t

From now on we are going to assume we have fixed an enumeration of register
machines in this style. There is a convention of writing “¢.(n) = k” to mean
that the eth machine halts with input n and outputs k. “¢.(n) 17 means that
the eth machine does not halt with input n. In these circumstances we say
¢e(n) diverges.

6Indeed it is deeply important that it is unimportant, for this is another invariance point:

“That’s very important,” the King said, turning to the jury. They were just
beginning to write this down on their slates, when the White Rabbit interrupted:
“Unimportant, your Majesty means, of course,” he said in a very respectful tone,
but frowning and making faces at him as he spoke.

“Unimportant, of course, I meant,” the King hastily said, and went on to himself
in an undertone, “important—unimportant—unimportant—important—" as if he
were trying which word sounded best.

Some of the jury wrote it down “important,” and some “unimportant”. Alice

could see this, as she was near enough to look over their slates; “but it doesn’t
matter a bit,” she thought to herself.
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6.3.1 The p-recursive functions are precisely those com-
puted by register machines

An essential gadget is

DEFINITION 39 Kleene’s T function: Input m and i and t, output a list
of t states of the mth machine started with input i, one for each time t' < t.
(The state of a register machine is the tuple of contents of the registers and the
current instruction.)

The output, T(m,i,t), of Kleene’s T-function is commonly called a com-
plete course of computation. We will assume without proof that T is prim-
itive recursive. The proof would be extremely laborious, but relies merely on
checking that all the functions involved in encoding and decoding are primitive
recursive. This is plausible because the machines have finite descriptions, and
are deterministic. Not only are they deterministic but the answer to the ques-
tion “what state will it go to next?” can be found by looking merely at the
machine and its present state, and not by consulting the positions of the plan-
ets or anything else which—however determinate—isn’t constrained to happen
inside the machine.

This shows that

Theorem 40 The function computed by the mth machine is p-recursive.

In other words: the machine with gnumber m computes the u-recursive
function: Ai. the least k such that m started with ¢ halts with output .
Now for the converse.

Theorem 41 FEvery p-recursive function can be computed by a register ma-
chine.

Proof:

Consider the rectype of functions built up from the initial functions (as
in the declaration of primitive recursive functions) by means of composition,
primitive recursion and p-recursion. This class contains all sorts of functions
that are undefined in nasty ways because it allows us to invert the results of
inversions and the result of inverting a function might not be total—as we have
seen. Nevertheless we can prove by induction on this datatype that for every
declared function in it there is a register machine that computes it. That is, in
the sense that whenever these declarations don’t fall foul of common sense by
attempting to invert functions that aren’t total, the machine that we build does
indeed compute the function.

The details of how to glue together register machines for computing f and g
into one that computes fog will be omitted, as will the details of how to compose
register machines to cope with the primitive recursion constructor, and how to
front-end something onto a register machine which computes f(z,y, %) to get
something that computes pzx.(f(z,y,2) = k).

|
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This completes the proof of the completeness theorem for computable func-
tions.

6.3.2 A Universal Register machine

Kleene’s T function is primitive recursive so there is a machine that computes
it. Any such machine can be tweaked into a universal or all-purpose machine:
one that can simulate all others.

We need two auxilliary functions on core-dumps: current_instruction(d)
and register_0(d), which return the current instruction and the contents of
register 0. Also a function last which returns the last element of a list would
be handy. Easy to check they are all primitive recursive. Once we’ve got those,
we can build a machine which, on being given m and %, outputs:
register_0(last(T'(m,i, (ut)(current_instruction(last(T(m,i,t) = HALT))))))

which is what the mth machine does on being given i.

(Notice that there is no universal finite state machine!)

One of the intentions behind the invention of computatble functions was to
capture the idea of a decidable set. One exploits it in some manner along the
following lines. A set is decidable iff it is the range of a computable function.
It turns out that that doesn’t straightforwardly give us what we want. Suppose
we want to know whether or not n is a member of a putatively decidable set,
presented as f“IN, for some computable function f. If we set our machine that
computes f to emit f(1), f(2) and so on, (or even run it in parallel with itself
if we are not assuming that f is total) then if n is ideeed a value of f we will
learn this sooner or later, but if it isn’t, this process will never tell us. However
this does at least give us a verification procedure: we can detect membership
of f“IN in these circumstances even though we are not promised an exclusion
procedure. Thus the natural idea seems to be that of a semi-decidable set: one
for which membership can be confirmed in finite time.

But is this the only way we can exploit computable functions to get a concept
of semidecidable set? Being the range of a computable function seems a pretty
good explication of the concept of a semideciable set, but then being the set of
arguments on which a computabale function halts—{n : f(n) |} seems pretty
good too. After all, if f(n) | then we will certainly learn this in finite time.
Fortunately for us, all obvious attempts to capture the concept of semidecidable
set using these idea give the same result.

REMARK 42 The following conditions on a set X C IN are equivalent.
(i) it is the range of a p-recursive function;
(1) it is the set of naturals on which a p-recursive function is defined;
(i) it is the range of a p-recursive function that happens to be total.

Proof:

(i) — (iii).

The converse is obvious since (iii) is a special case of (i). The key idea here
is that of finite but unbounded parallelism, an important idea which we will
now explain.
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Suppose X is the range of a computable function f, and M is a machine that
computes f. The idea of autoparallelism is that at stage n we run M with input
fst n for snd n steps. When we do this with a machine, the effect is that we
keep trying the machine with all inputs, continually breaking off and revisiting
old inputs—and continually starting computations on new, later inputs—so that
every computation is given infinitely many chances to halt. Of course once a
computation with input & has halted, we don’t revisit it. Therefore at stage n,
if fst n is an input that has already halted, we procede at once to stage n + 1.

We run M in parallel with itself as just described and declare g to be the
function that sends an input n to the nth thing output by M when run in
parallel with itself. g is total, and clearly it outputs all and only the members
of X. (I am ignoring the case where X is finite: check for yourselves that this
is safe!)

(i) = (i)

Given a machine M that outputs members of X we can build a machine M’
that on being given a number n runs M in parallel with itself as above until it
produces the output n: M’ then outputs 0, say (it doesn’t matter). M’ is then
a machine that halts on members of X and nothing else.

(i) — (i)

Given a machine M that halts on members of X, we can build a machine
that outputs members of X by simply trapping the output of M and outputting
the input instead of the output.

|

Incurable optimists might hope that this autoparallelism might give us a cure
to the problem discussed on page 111 in section 6.2. After all there is always
the possibility of running g in parallel with itself. Will this help? Although
that will turn up an input y to g s.t. g(y,#) = n if there is one there is no
reason to suppose it will turn up the smallest. Indeed quite which one it turns
up will depend on how we have implemented the autoparallel algorithm, so even
which functions turn out to be computable will depend on how we implement
the algorithm! This is clearly intolerable.

EXERCISE 47 Suppose that ¢ is a partial function of two arguments.

(1) Show that there is a partial computable function 1 of one argument such that
for each m if there are x with ¢(x,m) = 0 then ¢(y(m),m) = 0. If there are
no such z is your Y(m) defined?

(ii) Show that it is not always possible to take (m) = pz.(¢p(z,m) = 0).

See also exercise 3 in section 6.6.

EXERCISE 48 Show that one can take the total computable function that emits
members of our set to be one-to-one.

DEFINITION 43 A set satisfying the conditions in remark 42 is semidecid-
able 7 A set X is decidable if X and IN\ X are both semidecidable.

"The old terminology is ‘recursively enumerable’, which is gradually going out of fashion.
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“Decidable” is better than “recursive”’—the old terminology. “Recursive
set” would suggest that there ought to be also “primitive recursive set” —you
are one if you are the range of a primitive recursive function. But in fact

EXERCISE 49 FEvery decidable set is the range of a primitive recursive func-
tion. (Hint: use autoparallelism and Kleene’s T function.)

Note the parallel between the idea of a regular language which is the set of
strings accepted by a finite state machine, and the idea of a semidecidable set
which is the set of natural numbers on which a Turing machine will halt.

If X is semidecidable it is f“IN for some total computable f so whenever
n € X there is k € IN and a finite computation verifying that f(k) = n so that
n € X. This finite computation should be thought of as a proof or certificate in
the sense of section 2.1.7, so a semidecidable set of naturals can be thought of
as a subset of IN that happens to be a rectype in its own right. Indeed we can
take this further: by means of gnumbering every finitely presented rectype can
be thought of as a semidecidable set.

We are now in a position to give a slightly more natural version of definition
18. An axiomatisable theory is one with a set of axioms whose gnumbers form
a semidecidable set. (It is assumed that the theory only has finitely many rules
of inference. Without that condition any theory at all could be axiomatisable
as follows: take an empty set of axioms, and for each theorem have a nullary
rule of inference whose conclusion is that theorem.)

1. Show that any theory that can be axiomatised with a set of axioms that is
semidecidable also has a set of axioms that form a decidable set. (Beware
of this question: its proof is very silly)

2. Since Propositional Logic is decidable, the set of falsifiable propositional
formule over an alphabet is also semidecidable, so it is a rectype. Give a
presentation. (I do not know of a particularly sweet answer to this)

It might be felt that the following definition of decidable sets is more natural:
X is decidable iff there is a total computable function f : IN — {0,1} such that

X = [l

EXERCISE 50 Check that a set is decidable iff there is a total computable
function f:IN — {0,1} such that X = f~1“{1}.

The original definition looks more cumbersome and long-winded, but if one
starts with the definition of decidable sets given in exercise 50, it is much harder
to motivate the concept of semidecidable set and the connection between the
two ideas is less clear.

I emphasised that concentrating on partial functions was the conceptual
breakthrough: it was that that enabled us to prove the completeness theorem

That notation arises because any set of natural numbers can be enumerated (and enumerable
or denumerable are old words for ‘countable’), but not necessarily by a computable function.
If the set is enumerated by a recursive function, it is recursively enumerable.
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for computable partial functions. Quite how big a mess we would have got into
if we’d stuck with total functions is shown by the diagonal argument:

Theorem 44 The set of gnumbers of total computable functions is not semide-
cidable.

Proof:

Suppose the set of gnumbers of machines that compute total functions were
semidecidable. Then there would be a total computable function f whose values
are precisely the gnumbers of machines that compute total functions. Indeed
let f, be the function computed by the machine whose gnumber is f(n). Now
consider the function An.f,(n) + 1. This function is total computable, and
should therefore be f,,, for some m. But it can’t be f,,, because its value for
argument m is fy,(m) + 1 not fy,,(m). [ |

This should not come as a surprise. Ask yourself: if I am given the gnumber
of a machine, can I confirm in finite time that the function computed by that
machine is total? At the very least, it is obvious that there is no straightforward
way of confirming this in finite time. So one shouldn’t be surprised that there
is in fact no way at all of doing it—in finite time.

6.3.3 Undecidablity of the halting problem

Suppose we had a machine which, on being given a natural number n, decoded
it (using the primitive recursive unpairing functions alluded to on page 108)
into fst n and snd n (ny and ny for short), and then |= 0 if the n;th machine
halts when given input ns and =1 o/w.

We can tweak this machine (by using something to trap the output) to get
something with the following behaviour: On being given n, it decodes it into n4
and ny (fst and snd of n) and then |= 1 if the n;th machine diverges on input
na (just as before) but diverges if nqth machine halts when given input ns.

Front-end onto this machine a machine that accepts an input z and outputs
pair(z,z). We now have a machine with the following behaviour.

On being given n, it tests to see whether or not the nth machine
halts with input n. If it does, it goes into an infinite loop (diverges).
If not, it halts with output 1.

This machine is the ngth, say. What happens if we give it ng as input? Does
it halt? Well, it halts iff the noth machine loops when given input ng. But it is
the noth machine itself!

Formally we can write ¢, (no) J iff (by definition of ¢,,) ¢n,(n0) 1. Notice
the similarity with the proof of Cantor’s theorem (section 2.1.6)

What assumption can we discard to escape from this contradiction? Clearly
we cannot discard the two steps that involve just trapping output and front-
ending something innocent onto the hypothesised initial machine. The culprit
can only be that hypothesised machine itself! So we have proved
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Theorem 45 The set of numbers pair(p,d) such that p halts on d is not de-
cidable.

... though it is obviously semidecidable!

From now on we say “computable” instead of ‘u-recursive’. You may also
hear people saying “general recursive” or “partial recursive” which mean the
same thing. Confusingly you will also hear people talk about functions being
partial recursive in contrast to being total recursive. A set is decidable if its
characteristic function® is computable.

DEFINITION 46 The characteristic function of A C IN is
An. if £ € A then 1 else 0.

. written x(A).

6.4 Rice’s Theorem

Theorems 44 and 45 are manifestations of a general phenomenon, captured by
Rice’s theorem. (Though theorem 44 is actually slightly stronger than a special
case of Rice’s theorem).

Theorem 47 (“The S-m-n theorem”)
There is a computable total function S such that

be(a,b) = ds(ep)(a)
. and so on for higher degrees (more parameters).

This is a corollary of the equality between p-recursiveness and and com-
putability by register machines: one can easily tweak a machine for computing
Aab.ge(a, b) into a machine that, on being given a, outputs a description of a
machine to compute \b.@.(a, b).

In turn we get a corollary of this,

COROLLARY 48 The fixed point theorem.
Let h : IN — IN be a total computable function. Then there is n such that

n = Ph(n)-
Proof: Consider the map
Pair(ea :L’) = ¢h(5‘(e,e)) (:L‘)

This is computable and is therefore computed by the ath machine, for some
a. Set n = S(a,a). Then

On(7) =" Ds(a,0) (@) = bala, ) =* Pn(s(ara)) (®) =" Pu(n) (z)

8In other traditions sometimes called indicator functions.
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(1) holds because n = S(a,a); (2) holds by definition of S; (3) holds by
definition of a and (4) holds by definition of n.

Notice that we need h to be total computable.

There is a powerful corollary of this that is a sort of omnibus undecidablity
theorem.

Theorem 49 Rice’s theorem
Let A be a nonempty proper subset of the set of all recursive functions of
one variable. Then {n : ¢, € A} is not decidable.

Proof:

Suppose x(A) is computable; we will deduce a contradiction.

Find naturals @ and b so that ¢, € A and ¢, ¢ A. (Not only are there
such a and b but we can find them, because x(A) is computable.) Since x(A)
is recursive the following function is also recursive:

g(n) .= if ¢, € A then b else a

(“wrong way round”!) By corollary 48 there must now be a number n such
that ¢, = ¢y(n). Is ¢ in A?

If it is, then (i) ¢4(n) € A (since ¢n = Py(y,)) and (ii) g(n) = b by construction
of g. But if ¢,, = @y, then ¢4,y € A whence g(g(n)) = b (by construction of
g). Now g(n) =bso g(g(n)) = g(b) = a. This contradiction shows that ¢,, ¢ A.

Now try ¢, ¢ A. We have (i) ¢4(n) € A (since ¢, = ¢4()) and (ii) g(n) = a
by construction of g. But if ¢, = ¢y, then ¢4,y ¢ A whence g(g(n)) = a
(by construction of g). Now g(n) = a so g(g(n)) = g(a) = b. This gives a
contradiction too, so we must drop our assumption that A was decidable.

|

This theorem is very deep and very important, but the moral it brings is very
easy to grasp. It tells us that we can never find algorithms to answer questions
about the behaviour of programs (“Does it halt on this input?”; “Does it always
emit even numbers when it does halt?”) on the basis of information purely about
the syntax of programs (“Every variable occurs an even number of times”). In
general, if you want to know anything about the behaviour of a program, you
may be lucky and succeed in the short term and in a small number of cases, but
in the long run you cannot do better than by just running it.

In particular it has the consequence that it is not decidable whether or
not two programs compute the same function(-in-extension). This makes it
particularly important to bear in mind that the theory of computable functions
is in the first instance a study of function declarations (functions-in-intension)
than function graphs.

6.5 Relative computability

Quite early on in the development of the theory of computable functions people
noticed that the techniques developed to study computability generalise natu-
rally to enable one to study relative computability, what is termed so evocatively
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computation relative to an oracle. All one has to do is enhance the machine
architecture by adding a state in which the machine consults an oracle, which
will be a subset of IN, or a function IN — IN. This leads one naturally to the
study of equivalence classes of functions IN — IN under the relation of being-
equally-computable.

6.6 Exercises

Set an exercise on Trakhtenbrot’s theorem. This is a coding proof that won’t
work in prop calc. Interesting, because for most of these arguments propl calc
is sufficient.

1. Are the following three functions computable?

(To put it more fairly: for each of the following functions-in-intension are
there computable functions-in-intension with the same extension?)

(i) Az. if there is somewhere in the decimal expansion of 7 a string of
exactly  7’s then 0 else 1;

(ii) Az. if there is somewhere in the decimal expansion of 7 a string of at
least = 7’s then 0 else 1;

(iii) Ak. the least n such that all but finitely many natural numbers are
the sum of at most n kth powers.

2. Recall from page 10 the idea of the graph of a function. Show that the
graph of a total computable function f : IN® — IN is a decidable subset of
N
Is the graph of a partial computable function decidable?

3. Suppose that f is a total computable function satisfying Vn.f(n) < f(n+
1). Show that the range of f is a decidable set.
[Hint: the range of f is either finite or infinite; consider these two cases
separately. Be warned that your proof is not constructive!]

4. A Box of tiles is a set of square tiles, all of the same size. The tiles
have an orientation (top and bottom, left and right) and the edges have
colours. The idea is to use the tiles in the box to tile the plane, subject to
rules about which colours can be placed adjacent to which, and each box
comes with such a set of rules. (Naturally every set of rules includes all
the obvious things like: a bottom edge can only go next to a top edge, and
so on). So of course the box has infinitely many tiles in it. Nevertheless,
the tiles can only be of finitely many kinds. (It’s a bit like a scrabble set:
only 27 letters but lots of tokens of each)

With some boxes one can tile the plane. With some one can’t. Sketch
how to gnumber boxes and explain why the set of gnumbers of boxes that
can’t tile the plane is a semidecidable set.
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10.

11.

12.

13.

14.

15.

CHAPTER 6. COMPUTABLE FUNCTIONS

Let f: IN — IN be a strictly order-preserving total computable function.
Construct a semidecidable subset A of IN such that (i) for all e, if the
domain Dom(¢.) of the eth partial computable function is infinite, then
Dom(¢.) N A # 0 (ii) there are at most e elements less than f(e).

Deduce that there is a semidecidable set B such that IN \ B is infinite and
contains no infinite semidecidable subset.

Is it possible to decide given that ¢. is total whether or not
(i) Vn.¢e(n) = 07

(ii) In.de(n) < de(n +1)?

(i) In.ge(n) > ge(n +1)?

Any natural substitution function S will have S(e,n) > e and S(e,n) >n
for all e and n. Deduce that for any (partial) computable f there are
infinitely many e with ¢, = f.

Show that the following sets are not decidable.
(i) {e| . everywhere undefined } (i) {e|¢.is total}

(it) {e|Vi<e.(9.(6) 1)} () {elVi.(6.(i) L= i < e)}.

Is the following true or false? If h : IN — IN is total computable then there
is an e such that ¢, is total and ¢, = @p(e)-

Suppose that f,g : IN> — IN are total computable. Show that there exist
i, j with ¢; = ¢r(; j) and ¢; = ¢g(; ;). [Hint: show first that there is a
total computable h with ¢p,(;) = dg(in(i))-] (Hard)

Show that A C IN is semidecidable just when it is of the form {n €
IN | 3m.R(n,m)} for some recursive predicate R.

Which of the sets R and their complements =R from question 8 are semide-
cidable?

By considering enumerations of the partial computable functions find a
partial computable function that cannot be extended to a total computable
function.

Show that for any operating system whatever there can be no program
IS-SAFE which when given program p and data d says ‘yes’ if p applied to
d does not corrupt the O/S and ‘no’ otherwise.

(For lambda hackers only) The Church numeral n is that lambda term
representing the function which—when given a function f, returns the
function that does f to its argument n times. Thus Church numeral 1 is
the identity. Church numeral 0 is K of the identity. Find a lambda term
for successor. How do we implement multiplication and addition?
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16. (For lambda hackers only) Using the pairing and unpairing lambda terms

17.

you discovered earlier and your answer to question 2 show that any prim-

itive recursive function can be represented by a lambda term acting on
church numerals.

What might a decidable partition of IN be? Show that there is a decidable

partition of IN? s.t. any set monochromatic for it can be used to solve the
halting problem.
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Chapter 7

Ordinals

The word ‘ordinal’ has been used for years to denote a kind of number word:
there are ordinals and cardinals. Cardinals are words like ‘one’; ‘two’, ‘three’;
ordinals are words like ‘first’, ‘second’, ‘third’. Although some of the original
nature of the difference has been lost in the process of having these words
appropriated by mathematics, a significant and important part remains. Ordinal
numbers allude to order, and to positions in a sequence. Happily, the best
introduction to these ideas is by way of their historically first application.

For reasons we cannot go into here Cantor was interested in the complexity of
closed sets in . A closed set might be a perfect closed set (a union of closed
intervals) or it might have some isolated points. If one removes the isolated
points from a closed set one might get a perfect set. One might not. It might
be that once one removes all the isolated points from a closed set, a point that
hadn’t been isolated before now becomes isolated. One measures the complexity
of a closed set by the number of times one has to perform this operation of
deleting isolated points to obtain a perfect closed set. The interesting feature
is that even if one performs this deletion infinitely often one is not assured
of obtaining a perfect closed set. It’s not difficult to construct a closed set
containing a point z which is the limit of a sequence {z,} where z; becomes
isolated at stage k. z itself then never gets deleted, but it becomes isolated after
infinitely many stages. But all is not lost. After we have performed the deletion
operation infinitely many times, we can look at what is left, and perform the
deletion operation on that, and thereby continue the process transfinitely. One
can hope that eventually a perfect closed set is reached.

Let us now stand back and ask ourselves what it was about this scenario that
made it possible to apply this operation transfinitely. All that was needed was
that there should be a monotone (increasing or decreasing, it doesn’t matter)
function from some poset into itself, which is continuous, so that we have a
well-defined notion of what-happens-at-a-limit-stage.

Ordinals are now invoked as that-kind-of-number-that-counts-stages. This
is turn naturally generates them as a rectype: for any stage there is a just-next
stage, and for any increasing sequence of stages there is a supremum stage. The

125
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class of stages thus forms a rectype whose engendering relation is a wellorder.
Since the set of stages of any construction indexed in this way is naturally
wellordered by the engendering relation of the rectype of stages of the con-
struction, one is led to consider the isomorphism types of wellorderings. This
is another way of thinking of ordinals. These two ways are complementary,
and both right. We should now cast our minds back to the two ways we have
of thinking of natural numbers. We can think of them as sizes of finite sets,
or we can think of them as the members of a certain inductively defined sets.
These two ways of thinking about natural numbers correspond to the two ways
of thinking of ordinals. Ordinals can be thought of as isomorphism classes of
wellorderings, or they can be thought of as members of a rectype.

7.1 Ordinals as a rectype

Lower case Greek letters are used to range over ordinals. Its use in A-calculus
notwithstanding, the letter ‘A’ is always liable to a variable ranging over limit
ordinals in the way that in ‘A’-level analysis ‘z’ and ‘y’ are ordinate and abcissa
or input and output variables, control and state variables ...

We are going to derive ordinal arithmetic in a fairly relaxed and informal
way from ordinals constructed as a rectype in a way suggested by the following
ML-style pseudocode.

succ of ordinal

new_data_type ordinal = 0
I
| sup of (chain-of ordinal)

The occurrence of the word “chain” in the second clause of course presup-
poses an ordering, so we must come clean on that, by defining <¢,, recursively
as follows:

DEFINITION 50 We start by noting that (as with IN) succ is understood to
have no fized points.

a<onB—=B<onT—=a<ony;
« SOn a;
aSOnBSOna_)a:B;
0 <on o;
a <o, succ «a;
a <on B — succ a <p, succ f;
a€e X = a<p,sup X;
(Va € X)(a < B) = sup X <on B.
Naturally we will also want ‘o <o, B’ as short for ‘a@ <on BNAB Lon @’

The ordinals are very nearly a complete poset, but not quite. The presence
off the succ operator prevents there being a top element, but every bounded
chain has a least upper bound. The following exercise is really only for enthu-
siasts: it’s a bit fiddly.
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EXERCISE 51 Show that <o, is a wellordering.
Hint: recycle the proof of Witt’s theorem to show it is a total ordering,
then use general considerations about rectypes to show it is wellfounded. After

all <pn is the engendering relation of a rectype and as such is bound to be
wellfounded.

Declaring the ordinals like this is a kind of indian rope trick, but it does at
least give us a picture of ordinals-as-things-that-count-stages.
Then we define a + 3 recursively by

DEFINITION 51 .
a+0:=aqa;
a + succ f:=succ (a+f);
a+sup X :=sup {a+0:5€ X}.

EXERCISE 52 For all ordinals a and 3, a <on 8 iff (3y)(a+ v =)

Now we can procede to define multiplication ...

DEFINITION 52 .
ax0:=0;
a x sucec f:=(axfB)+a;
axsup X :=sup {axf:8€X};

. and exponentiation

DEFINITION 53 .
a® := succ 0;
atseee B = (af) x a;
a8 X) .= sup {af : € X}.

Given these definitions it is clear that addition on the right, multiplication
on the right and exponentiation on the right, namely the functions Aa.f + a,
Aa.f x a and Aa.f* are—for each ordinal f—continuous in the sense in which
the ordinals are (very nearly) a chain-complete poset.

EXERCISE 53 Look again at exercise 3.3.2.1.5 which shows that these opera-
tions are noncommutative.

Give examples to show that addition and multiplication on the left are not
commutative.

Give an example to show that Ma.o? is not continuous.

Which of the following are true for all o, 8 and v?

1. (ax pB)Y=aY x §7;

2. 7(%6) =% xAP;

3. (a+B)xy=axy+Bxy;
4.y x(a+B8)=yxa+vyxp.
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Prove the true assertions and give counterexamples to the false assertions.

We will need later a notion of ordinal subtraction. a — f is the length of a
wellordering obtained from a wellordering of length a by chopping off an initial
segment of length .

EXERCISE 54 Give a recursive definition of ordinal subtraction, and prove
that your definition obeys: B+ (a — ) = a.

We have already invoked a concept of continuity of functions from On (or
(On timesOn) to On. For the following definition we need to hark back to the
idea of the order topology: a set of ordinals is closed iff it contains all its limit
points.

DEFINITION 54 A clubset is a CLosed and UnBounded set. Alternatively:
the range of a total continuous function. (Sometimes called a normal function,).

Thus a normal function is strictly increasing and continuous. It’s obvious
that every normal function has a fixed point. If f is normal, then sup{f"« :
n € IN} is the least fixed point for f above a. In fact:

LEMMA 55 The function enumerating the set of fized points of a normal func-
tion is also normal.

Proof: See your answer to exercise 3.1.3 14.

DEFINITION 56 If ¢y C ¢ are two chains in a poset with the same sup we
say c; is cofinal in c,.

Although we will only use this definition in connection with sequences of
ordinals, it makes sense in a much more general context: f and g do not have
to be wellordered sequences for definition 56 to make sense.

DEFINITION 57 The cofinality of a, written ‘cf(a)’ is the least ordinal that
is the length of a cofinal subsequence of something of length c.

Thus ¢f(w) = w, and the cofinality of any successor ordinal is 1.
Notice that the relation ‘f is cofinal in ¢’ is transitive.

DEFINITION 58 An ordinal « is regular if « = cf(a). Otherwise it is sin-
gular.

Clearly cf is idempotent (cf(cf(a)) = cf(a)) because of transitivity, so all
cofinalities are regular.

I mentioned earlier the important triviality that every normal function has a
fixed point. This is true because we can always obtain a fixed point by iterating
w times. This gives us fixed points of cofinality w, which are typically singular.
The assertion that normal functions have regular fixed points is a strong (“large
cardinal”) axiom.
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EXERCISE 55 Prove that wy (the first uncountable ordinal) is regular. You
may use the axiom of countable choice.

(Without AC the only (infinite) ordinal we can prove to be regular is w,
though finding models of ZF where all infinite ordinals are singular is very
difficult indeed. Come to think of it, you may well wonder how can you can be
sure that there are any uncountable ordinals in the first place—let alone regular
uncountable ordinals. This is a consequence of a deeply mysterious theorem
called Hartogs’ theorem which will be theorem 100, and states that for every
set x there is a wellorderable set y which cannot be injected into z.)

The fact that w; is regular means that we cannot reach it by any countable
iteration of a continuous function from On into itself: Think of any operation
that takes countable ordinals to countable ordinals iterate it w times and take
the sup, the result is never w;—because the way it is generated ensures that it
is of cofinality w!

7.1.1 Cantor’s Normal Form Theorem

To prove Cantor’s normal form theorem we will need to make frequent use of
the following important triviality.

REMARK 59 If f : On — On is normal, then for every a € On there is a
mazimal f € On such that f(f) < a.

Proof: Consider the set of § such that f(8) < a, and let §y be its sup. By
continuity of f, f(Bo) < « and is clearly maximal with this property. [ |

This enables us to prove a normal form theorem for ordinal notations.

If a < B then there is a largest v such that a” < 8 by remark 59. Call this
ordinal 9. Then a” < 3. If " = 3 we stop there.

Now consider the case where a” < 3. By remark 59 there is a maximal
f such that o -0 < 3. Call it 6y. If @ -6y = 8 we stop there, so suppose
a -0y < B. Now B = a7 -6y + do for some . (remember dfn of <py,).

What we have proved is that, given ordinals a < (, we can express § as
™ - 6y + §p with 79 and 0y maximal. If §y < a we stop. However if §p > a we
continue, by repeating the above process with a and dq.

What happens if we do this? We then have § = o™ - 01 + 61, which is to say

,BZCW0 -90+CKV1 -91 +61
One thing we can be sure of is that 79 > ;. This follows from the maximality
of 6y. Therefore, when we repeat the process to obtain:
B=a" -0y+a" -0 +a O+...a" -0, +...

we know that the expression can only be finitely long, because the sequence of
ordinals {vo > 71 > 2 > V... } is a descending sequence of ordinals and must
be finite, because <o, is wellfounded.

So we have proved this:



130 CHAPTER 7. ORDINALS

Theorem 60 For all B, and all & < B, there are o > ... > vp and 0y ... 0,
such that

B=a" -6y+a" -0 +a -0+...a" -0, +...
| ]

If « = w all the 6, are finite. (If any of them were bigger than w, then
the corresponding =y, would not have been maximal.) This means that we can
actually take each 6, to be 1, by allowing finitely many repeats.

Quite how useful this fact is when dealing with an arbitrary ordinal £ will
depend on B. After all, if 3 = w? then all Cantor’s normal form theorem will
tell us if we run the algorithm with w and § is that this is, indeed, the case.
Ordinals 8 s.t. # = w? are around in plenty. They are called e-numbers. They
are moderately important because if 8 is an e-number then the ordinals below
B are closed under exponentiation. The smallest e-number is called ‘¢y’. For the
moment what concerns us about ¢, is that if we look at the proof of Cantor’s
Normal Form theorem in the case where 3 is an ordinal below €y and a = w
the result is something sensible. This is because, €y being the least fixed point
of Aa.w®, if we apply the technique of remark 59 to some a < €y the output of
this process must be an expression containing ordinals below «.

The following example of a wellordering of length €y might help.

The consider those functions obtained by adding to the ring of polynomgals
in one variable with coefficients in IN the extra operation giving things like 2% 3
from z% + 3. Order these functions IN — IN by domination (see definition 36.)
The result is a wellordering of length €.

7.2 Ordinals from Wellorderings

Chat about implementation of ordered pairs. Quote Alice again: important
that we can do it, deeply unimportant how we do it. Just to nail things down,
we will take ordered pairs to be Wiener-Kuratowski.
We will let capitalised variables (‘X’, ‘X", ‘Y’ ... ) range over sets. Lower
Cnd G 00 (0

case variables (‘z’, ‘y"’, ‘y’ ... ) likewise. We will have these two styles—common
in set theory—so that we can write ‘x € X’ as usual.

DEFINITION 61 Given two binary structures (A, R) and (B, S) we say (B, S)
is an end-extension of (A, R) if AC B and R C S and whenever y € A and
xSy then x € A too.

(You will already have discovered this concept in your answer to exercise 2
page 53, and in your answer to exercise 3 page 48.)

For the moment we will be primarily interested in the case where (A, R) and
(B,S) are partial orders—indeed wellorders, and in those circumstances the
picture is easy to paint in slogan form: the new members all come after the old
members. We will later also be interested in the case where both R and S are €
and in this case the slogan is “New sets—yes; new members of old sets—no!”.
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In general the concept of end-extension isn’t very useful except in connection
with models of a theory of a rectype.

HIATUS

The result of concatenating two wellordering is a wellordering. [HOLE This
is disjoint union is ordinal addition]. We have already met lexicographic orders
in definition ??. We now need to show that if (A, <) and (B, <g) are both
wellorderings then so is A x B with the lexicographic ordering. (We saw this in
exercise 4.) This is ordinal multiplication. We also have to show that if we have
a wellordered family of disjoint wellorderings, then the result of concatenating
them all is also a wellordering. (Strictly, if we are going to do this, then we
didn’t need the same result for addition of two ordinals, but only for S—but
never mind)

PROPOSITION 62 The result of concatenating a wellordered family of disjoint
wellorderings is another wellordering.

Proof. Suppose we are given a family (A4; : ¢ € I) of structures, where each
A; is a wellordering, and the index set is wellordered by <;. We are also going
to suppose that if i # j € I then A; and A; are disjoint. We now wellorder the
union of all the A; (written “A = | J,.; A;”) by saying that = precedes y if the A;
that it belongs to is <j-earlier than the A; that y belongs to, or—if they belong
to the same A;—we rule that x preceds y if z <4, y. Now we want to be sure
that this relation—which we shall write “<4”—wellorders A. It is certainly a
total order. It remains to be shown that it is wellfounded. Suppose it isn’t, and
X is a subset of A with no least member in the sense of < 4. Consider the set of
¢ such that X contains members of A;. This is a subset of I and so must have
an <j-least element, ig, say. Now consider X N A;,. [HOLE a picture would be
a great help]. Now since X has no <4-least member we are not about to get
a subset of it that does have a <j4-least member by chopping stuff off the end
(though we might have a chance if we were to chop stuff off the beginning) so
X N A;, has no <4-least element either. But, by virtue of the way we defined
it, the restriction of <4 to A;, is just < 4;, which is known to be a wellordering,
so X N A;, does have a <4-minimal member after all, and this must be the
minimal member of X that we were after.
|

PROPOSITION 63 Given two wellorderings A = (A,<4) and B = (B,<p)
there is a unique isomorphism between one and an initial segment of the other.

Proof:

We define the isomorphism by recursion. The idea is that we pair off the
< g-first member of A with the <p first member of B and thereafter we pair the
< -first thing in A (that has not already been used) with the <pg-first thing in
B (that has not already been used). There always is a first thing that has not
already been used since 4 and B are wellorderings, so every subset has a first
member.
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This is usually formalised as a recursion over the ordinals: we define by
recursion on On a function that, on being given an ordinal, returns a partial
map from an initial segment of A to an initial segment of 5.

However, I prefer to do this directly by constructing over A and B themselves.
We consider the class of partial isomorphisms between A and B. These are
what you might expect: isomorphisms between an initial segment of A and an
initial segment of 5. We will also need the concept of two partial isomorphisms
agreeing on their intersection. We then prove by induction on A4 that, for all
a € A, if ¢ and j are partial isomorphisms A — B which are defined at a (i.e.,
i(a) and j(a) are both defined) then i and j agree on a: i.e., i(a) = j(a). For
suppose not. Let a be the <4-least element of A such that there are partial
isomorphisms 4, j from A — B s.t. i(a) # j(a). This must mean that B has
two elements i(a) and j(a) that are equally plausible as mates for a. But this
cannot be, since B is a wellordering and so one of i(a) and j(a) must come
earlier than the other and be the only fit mate for a. This means that we can
sensibly introduce a notation apg for the element of B that a must be paired
with. We can do the same for B, so that to b € B there should correspond a
b4. Notice that there is no reason to suppose that an arbitrary element of A
is in the range of any partial isomorphism: .4 might be much longer than B or
vice versa. This concentrates our minds on the two functions Aa € A.ap and
Ab € B.b4. One or other might be partial instead of total (if A is longer than B
then Aa € A.ap will be partial) but they cannot both be partial. (If they are,
they can both be extended).

COROLLARY 64 No wellordering is the same length as any of its proper initial
segments.

Proof: Apply proposition 63 to the situation where A and B are the same
wellordering. It tells us that there is a unique isomorphism between A and
some initial segment of A. If there is only one isomophism there is only one
initial segment, and since A ~ A that initial segment must be A itself.

|

DEFINITION 65 We define the class of all wellorderings as the intersection
of all classes of total strict orderings closed under unions of chains (where the
order relation is end-extension) and additions of one extra element on the end.

Of course it is more usual (and, mostly, more useful) to say that a relation
R is a wellordering if it is a wellfounded strict total order as we did earlier, on
page 53. By induction on the datatype everything in it is a wellordering. The
converse is a bit harder!

EXERCISE 56 Prove the equivalence of these two definitions of wellordering.

Either of these two definitions can justify a principle of induction over
wellorderings. This principle takes two forms, one arising from each definition.
Since the datatype of wellorderings is a rectype we deduce an induction principle
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for it in an obvious way. On the other hand there is a principle of wellfounded
induction that we can prove for each individual wellordering, namely

If ¥ = (X, <x) is a wellordering, and P a property such that (Vz €
X)Vy)(y <x z — P(y)) = P(z)), then (Vz € X)(P(x)).

Given X = (X, <x) and 9 = (Y, <y), both wellorderings, we construct the
following recursively defined set.

DEFINITION 66 .

1. = x_,q 15 to be the C-smallest bijection pairing the <x-first member of X
with the <y -first member of Y ) and closed under the following operation:
if X' C X and X' is mapped 1-1 onto Y' CY by =x_,g then =y g
also pairs xx: with yy: where xx: is the <x-first element of X \ X' and
Yy is the <y -first member of Y \ Y.

2. If =x_,q is defined on the whole of X we write X=9).
3. If = x_,q) 15 defined on the whole of X but is not onto Y we write X — ).

Theorem 67 Given any two wellorderings, there is a canonical map from one
to an initial segment of the other.

Proof:

It is an immediate consequence of this definition that anything in X that
< x-precedes anything in the domain of “x_,g is also in the domain of X, and
Y similarly. The only way in which this construction can fail to eat up all of X
and Y is if at some stage the X’ we are considering, or the Y’ we are considering,
turn out to be empty. If this happens, we have an isomorphism from one to an
initial segment of the other. If it never happens, then (X, <x) and (Y, <y) are
isomorphic. [ |

DEFINITION 68 A structure is rigid if it has no nontrivial automorphisms.
Theorem 69 All wellorderings are rigid.

Proof:

Suppose X is not rigid and let  be the <x-minimal member of X that is
moved by an automorphism. So for some automorphism 7 we have z < m(x).
But then 7~ 1(z) < z, since 7 is an automorphism, and then z is not minimal.

|

COROLLARY 70 Any isomorphism between two wellorderings X and 2) is
unique

Proof:
If we had two distinct isomorphisms f and g between X and ) then fog™
would be a nontrivial automorphism of ). ]

1
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DEFINITION 71 We say (X, <x) canonically injects into (Y, <y) if the
canonical bijection = x_ o uses up all of (X, <x) and we write (X, <x)=(Y, <y).

Thus clearly (X, < x) canonically injects into (Y, <y) iff (X, <x)=(Y, <y).
PROPOSITION 72 < is transitive

Proof: Compose the maps. ]

DEFINITION 73 .
We write ‘X ~9)’ for either of the following:

1. The canonical bijection =y _,q, is total and onto.
2. XY AYP=X.
We say of two wellorderings thus related that they are of the same length.

We had better show that these two clauses are equivalent.

1 — 2. The first conjunct is immediate. The second comes from the fact
that the inverse of a canonical bijection that is iso is also a canonical bijection.

2 — 1. The composition of two canonical bijections is another canonical
bijection. So =y 90 gy 3 18 =3 5. But this is onto X, so =y _ 9 must
have been onto Y. This is 1.

It is true that in this development we have not taken isomorphism as a prim-
itive of this language, because it is convenient to approach it via the uniqueness
theorem, corollary 70, but let us for the moment imagine we had taken it as
primitive. We can then write X=9) if (3%¥')(3YD") (X' 2 XAY' ~PAX' C. D).
This relation is a preorder, and we can extract an equivalence relation from it
as usual, and that equivalence relation is—the relation ~ we first thought of.
This is the same state of affairs we found with cardinal arithmetic.

We end up where we started because of the Schroder-Bernstein theorem
(as it is known in the cardinal case). The analogous statement for the ordinal
version of < is much more trivial and has just been proved in the discussion
following definition 73.

LEMMA 74 ~ is an equivalence relation.

Proof:

(i) ~ is reflexive because of the identity map.

If X = (X, <x) we prove by induction on <x that = _, y is the identity.
This is because the identity relation restricted to X is one of the family of
bijections of which <, _, 5 is defined to be the least.

(ii) ~ is transitive. (compose the maps)

(iii) ~ is symmetrical. (take the inverse)

|

The emergence of this isomorphism relation enables us to say what ordinal
arithmetic is. (First order) Ordinal arithmetic is the study of those
relations between wellorderings for which ~ is a congruence relation.
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LEMMA 75 No two distinct initial segments of a wellordering are the same
length.

Proof: We will prove the following assertion by <x induction on ‘z’:

V) (({zeX:2<xyh<x)=({zeX:z<x 7}, <x)) =2 =Y)

Pick z in X <x-minimal so that there is y in X such that = # y but
({reX:z2<xy},<x) ~ ({xr€ X:2<x a},<x). Then pick y minimal so
that x Zy but {z € X : 2 <x y},<x)~ {{z € X : 2 <x z},<x). By hypoth-
esis, x and y are distinct, so one must be <x the other. Suppose it is z, without
loss of generality. But then the initial segment bounded by z is isomorphic to
two distinct initial segments of X contradicting corollary 70.

LEMMA 76 < is wellfounded.

Proof:

Suppose A is a nonempty set of wellorderings such that no member of it
injects into all the others. Let X = (X, <x) be an arbitrary member of A.
Since A has no element that injects into all others, there are at least some
9 = (Y, <y) such that when we construct the canonical injection =g, from
) to X, there are bits of X that are not in the range of the canonical bijection.
Let X' be the collection of elements = of X such that, for some (Y, <y), z is
not in the range of the canonical injection <g)_, 5.

We will show that X' has no least member under <x. Suppose it does, and
x is the <x-least element of X’. Then, for some ) € A, z is the first thing
not in the range of < ,». But then 9 injects into every wellordering in A4,
contradicting the assumption that there is no such 9).

|

More graphically (because of the connexity of < (theorem 67) every nonempty
set X of wellorderings has a member that canonically injects into all members
of X.

Now let us demonstrate a few elementary facts about wellorderings.

REMARK 77 If there is an order-preserving embedding m : X — Y then
(X, <x) canonically injects into (Y, <y).

Proof: We know that (Vz € X)((=x_9)(z) < 7(z)) because (=2x_,9)(z) is
the least thing in Y not in the range of = y_, 4, restricted to {w € X : w <x =},
whereas all we know about 7(z) is that it is one of the things in Y not in the
range of =y _,q) restricted to {w € X 1w <x x}. ]

Remark 77 actually characterises wellorderings in the sense that

EXERCISE 57 A linear ordering X is a wellordering iff every linear order that
can be embedded in X is isomorphic to an initial segment of X.
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We saw a definition of ordinal exponentiation earlier. There is an alterna-
tive characterisation of ordinal exponentiation that is natural and connected to
topics that will arise later. Let (A, <4) and (B, <p) be wellorderings of length
a and J respectively. Partially order the set of functions with finite support’
from B to A by the colex ordering: f < g iff at the last argument where they
differ the value of f is less than the value of g.

EXERCISE 58 Check that this is indeed a wellordering of the functions B — A
with finite support and is of length of.

Give an example to show that if we had ordered these functions by first
difference instead of last the result wouldn’t always be a wellorder.

7.2.1 Cardinals pertaining to ordinals

DEFINITION 78 Aninitial ordinal is one such that the domain of any wellorder-
ing of that length is larger than the domain of any wellordering of any shorter
length.

Here of course by ‘larger’ we mean that there is an injection going one way
but no injection (not just no order-preserving injection) going the other way.

Assuming AC we can generalise exercise 55 to show that for every ordinal a
the « + 1th initial ordinal is regular. (This is standard set theory but we won’t
need it).

Although this definition relies on the conception of ordinals as isomorphism
types of wellorderings this won’t cause much difficulty for the reader as the
only initial ordinals we need to think about are—apart from the finite initial
ordinals!—w and w; . the first uncountable ordinal. (In the Von Neumann imple-
mentation of ordinal and cardinal arithmetic in ZFC initial ordinals implement
cardinals.) Ordinals below w are typically identified with natural numbers. The
set of countable ordinals is sometimes called the second number class. This
expression is Cantor’s. (The first number class is of course IN!)

Assuming full AC (as is common in the study of wellfounded sets) every
cardinal corresponds to a unique initial ordinal. The « + 1st (infinite) initial
ordinal is w, (a4 1st because we start counting at ‘0’ so Ry is the first aleph. We
always omit the subscript ‘0’ in ‘wp’!) and the corresponding cardinal number
is Ng.

This notation makes sense even without AC. A cardinal of a wellorderable
set is called an N and the collection of alephs is naturally wellordered. The ath
aleph is notated ‘N,’. Remember that 0 is the least element of IN, so the first
aleph is Ng!

[HOLE Usual dire warning about the difference between w* and Ro™° ]

Next we show

Theorem 79 Cofinalities are initial ordinals.

Lthis means “on all but finitely many arguments the function takes value 0”.



7.3. RANK 137

Proof: Fix (X, <x) a wellordering of length ¢, with ¢ regular. Suppose further
that k is the initial ordinal corresponding to ( and x < (. We will obtain a
contradiction. We enumerate X (in a different order) as a k-sequence: (X, <,).
Delete from X any element which is <x something which is <,, of it. What is
left is a subset of X cofinal in X in the sense of either ordering and which is of
length x at most, contradicting regularity of ¢ ]

So every regular ordinal is initial. So every countable ordinal > w is singular.
So it has smaller cofinality. This cofinality cannot be a smaller countable ordinal
> w because cofinality is idempotent. So

REMARK 80 FEvery countable limit ordinal has cofinality w.

The successor ordinals of course have cofinality one!

7.2.2 Time for some exercises

These need to be divided up

1. Look at your answer to exercise 5, p. 28. What is the rank of the well-
founded relation you discovered?

2. Use Cantor Normal forms to show that every ordinal can be expressed as
a sum of powers of 2.

3. The class of wellorderings is closed under substructure and cartesian prod-
uct.

4. The end-extension relation between wellfounded binary structures is well-
founded.

5. The transitive closure of a wellfounded relation is wellfounded.
6. Complete the proof of the recursion theorem: theorem 3.

7. Look again at exercise 3 from chapter 3. You should now be able to do the
following proof, which is slightly more standard. Turn G upside-down. It
has a wellfounded part (which is the part on which you can define a rank
function in the manner of theorem ?? below). Use the recursion theorem
to define a map from the wellfounded part of G to {I,II}. Use the fact
that all infinite plays are won by player II to show that one of the two
players has a winning strategy.

7.3 Rank

We first encountered ordinals in the way Cantor did, as the kind of number
appropriate for counting the stages of processes of transfinite length. But not
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all transfinite processes have stages that are linearly ordered by the prerequsite
relation. It isn’t hard to imagine that there could be processes whose prerequiste
relation was something like that in the Hasse diagram of figure 7.1, where actions
taken at stages further up the page rely on the successful completion of actions
taken lower down the page on the same line. If the processes (the bottom points
of the Hasse diagram) are all started simultaneously and run in parallel then at
stage w we will be able to do the task located at point z.

Figure 7.1: A relation of rank w

Suppose we have defined a function f by recursion on the relation whose
Hasse diagram is in figure 7.1. How long does it take us to compute f(x)? Well,
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the recursion tells us to call f on all the immediate predecessors of x. These
predecessors are nicely presented in such a way that computing the nth lets us
in for a nest of subroutine calls of length n. Thus (assuming as we will that we
can call simultaneously as many copies of this program as we like) after infinitely
many steps we will have evaluated all of them and in one more step we will have
computed f(z). We would like to have some more information about what sort
of infinity this is. Now look at the following tree

Suppose we have defined a function f by recursion on the relation whose
Hasse diagram is in figure 7.2. How long does it take to compute f(y)? Clearly
one step longer than it took us to compute f(z), in the sense that we compute
f(y) after (one stage after) we compute f(x). So the kind of infinite number
we are dealing with is one that gets larger when you add 1! Notice that infinite
cardinal numbers do not have this property (though finite ones do: exercise 77
tells us that (Vn € IN)(n # S(n))) since if we add an extra element to IN we
obtain a set the same size as IN. This makes it clear that we are dealing with
a different sort of number altogether. It also introduces us to the notion of the
rank of a wellfounded relation.

What we are after is a parameter (“ nastiness”) associated with points =z
in the domain of R that tells us how hard it is to compute f(z). Clearly for
these purposes all R-minimal elements are equivalent, and have nastiness 0. The
nastiness of any element is at least as big as the nastinesses of its R-ancestors.
Of course the complexity of the computation of G(z,0) might well depend on
x but we are interested only in the contribution to the complexity made by
R. Thereafter two points z and 2’ have the same nastiness as long as their R-
ancestors are equally nasty. The thinking behind this is that since we are also
assuming unbounded parallelism the number of R-ancestors of z has no effect
on the nastiness of z: the only thing about them that matters is how nasty they
are.

This function we have just defined is called rank, usually written with a ‘p’.

DEFINITION 81 If R is a wellfounded relation we define p by recursion on R:
p(x) = sup{(p(y)) +1: R(y,)}).

An illustration is in order. Consider IN, with the usual wellfounded relation
< on it. What is p of 07 It is the sup of {(p(y)) +1 : y < 0}. This set is empty,
and the sup of the empty set is 0. (0 is the smallest thing in IN > everything in
the empty set.) p(1) is now {(p(y)) +1:y < 1}. There is only one thing below
1, namely 0, and p(0) + 1 is 1. So, p(n) = n (by induction!) This is a trivial
example, but it is only an illustration.

In fact we have two natural ways to think of a rank function. We can either
(as we have just done) define a rank function for each wellfounded structure, so
that it is a function that accepts elements of that structure and returns ordinals.
The other thing we can do is associate with each structure the smallest ordinal
that is not the rank (in the first sense) of any element of the structure. This we
can think of as the rank of the structure.
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EXERCISE 59 Show that if (X, R) is a wellfounded structure then the rank of
any point y in X is the same as the rank of (*R~1“{y}, R |* R~'“{y}).

We are not going to make any use of ranks here, beyond pointing out that
we have for any wellfounded relation R a function from dom(R) to the ordinals.
What this means is that just as IN has a privileged position among inductively
defined sets (any induction over an inductively defined set with first-order gen-
erating function can be thought of as an induction over IN) so (On, <o, ) has a
corresponding special position among wellfounded relations: any induction over
wellfounded relations can be thought of as an induction on rank. Thus instead
of doing induction over some wellfounded relation R to prove that everything
in dom(R) is ¢ (where the induction hypothesis is “all R-predecessors of = are
¥” and we conclude “z is 9”), we prove by induction on rank that everything
in dom(R) is ¢ (where the induction hypothesis is “everything of rank < « is
¥” and we conclude “everything of rank « is ¢”).

Theorem 82 If MM is a rectype with carrier set M and with constructors of
finite arity, then (M,R) where R is the engendering relation of MM is of rank
precisely w.

Proof:

This is because any element of an inductively defined structure, no matter
how many founders or generating functions there are, is obtained by some finite
number of applications of those functions to the founders. That is to say, we
prove by structural induction on the structure that all its elements have finite
rank. Indeed we define the rank by a recursion.

|

We cannot say much about the ranks of the engendering relations on rectypes
that do not have finite character.

We first encountered ordinals here as values of a parameter measuring lengths
of computations with infinite parallelism (“ nastiness”). This is not the only
way in which people other than Set theorists can naturally bump into them.
Consider a computer system for storing sensitive information like people’s credit
information, or criminal records, and suchlike. It is clearly of interest to the
subjects of these files to know who is retrieving this information (and when and
why), and there do exist systems in which each file on an individual has a pointer
to another file which contains a list of the the userids of people accessing the
head file, and dates of those accesses. One can even imagine people wishing to
know who has accessed this information, and maybe even a few steps further. A
well-designed system would be able to allocate space for new and later members
of this sequence of files as new reads by users made this necessary. These files
naturally invite numerical subscripts. The system controllers might wish to
know how many files had been generated by these reads, and know how rapidly
new files were being generated, or what statistical relations existed between the
number of reads at each level. This information would have to be stored in a
file too, and the obvious subscript to give this file is w. (It wouln’t be sensible
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to label it ‘n’, for n finite (even if large) because there is always in principle
the possibility that we might generate n levels of data files.) Then we start all
over again, with a file of userids and dates of people who have accessed the wth
file. Thus we can imagine a system where even though there are only finitely
many nonempty files some of those files naturally have transfinite ordinals as
subscripts.

Under any homomorphism of binary structures the image of a bad (no min-
imal elements) subset is also bad, so a homomorphic image of an illfounded
sructure is also illfounded. This shows:

REMARK 83 A binary structure is wellfounded iff it admits a homomorphism
onto a wellordering.

Do not worry about getting a formal proof of this until after we have under-
stood the axiom scheme of replacement.?

EXERCISE 60 Verify that the functions + and X defined by the recursions
above correctly measure the lengths of the wellorderings given by concatenation
and cartesian product as above.

There is even a synthetic version of ordinal exponentiation, though it is far
from obvious. If we have wellorderings (A, <4) and (B, <p) of length a and 8
respectively then we can form a wellordering of length o as follows. Let the
first element of (B, <pg) be 0p. Then consider the set of maps f from A to B
with the property that f(a) = Op for all but finitely many a € A. Then order
this lexicographically.

EXERCISE 61 Prove that this wellordering is of length of

It would be nice to have natural examples of wellorderings of lengths other
than w. IN x IN ordered lexicographically is of length w?. And, in general,
IN" ordered lexicographically is of length w™. We can wellorder the set of all
finite lists of natural numbers to a longer length than this by a variant of the
lexicographic ordering, but the definition is forgettable because of complications
to do with deciding how to compare lists of different length. In some ways a
simpler way to present these ordinals is through wellorderings of polynomials
by dominance. (see definition ??). Consider quadratics: Az.(az? + bx + ¢) and
order them by dominance. It is fairly clear that Az.(az?+bx+c) is dominated by
\z.(a'z? +b'z+c) iff (a,b, c) comes below (a’, V', ¢') in the lexicographic order of
IN x IN x IN. So the set of quadratics, ordered by dominance, is of length w?. In

2Tt’s just as well this theorem is true. If it weren’t then the lecturer’s linearisation problem
might have unsolvable instances. As it is, once one has arranged things so that the prerequisite
relation on material for a course is wellfounded, one can wellorder what one wants to write.
(The prerequisite relation might be a partial order, but we have to refine it to a total order
because time is totally ordered.) If this weren’t true, wellfoundedness of the prequisite relation
would not be a sufficient condition for explainability! The fact that it is a neccessary condition
for explainability bears a bit of reflection. Just think—all those areas of knowledge that will
never be known because the prerequisite relation restricted to them is not wellfounded ... !
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fact this holds for polynomials of higher degree as well, so the set of polynomials
of degree n, ordered by dominance, are of length w™*!. Finally the set of all
polynomials (ordered by dominance) will be of order w + w? +w?... +w™...
What is this ordinal? Well, w” 4+ w™*! is the same as w™t!, so it is simply the
sup of all these ordinals, which, by definition, is w*. Of course we could have got
straight the definition of the wellordering of finite sequences of natural numbers
for another presentation of w* but this advantage of this version is that it can
be easily upgraded. Consider now not the set of polynomials with coefficients in
IN but the much larger class of functions obtained by allowing exponentiation
as well, so we can have expressions like

@ 3 50
ef TTHT et 4 2200 4 137 43

and consider what happens if we try to order these by dominance.
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Figure 7.2: A relation of rank w + 1
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Chapter 8

Set Theory

The semantical and Logical paradoxes. Sets as properties-in-extension. Well-
founded sets. Zermelo and Zermelo-Frankel. Limitation of size, collection and
replacement. Rank and the Von Neumann hierarchy. Hartogs’ theorem and
the existence of rectypes. The reflection principle. Independence of the axioms:
foundation, power set, replacement.

when do we implement ordered pairs?

8.1 Prologue

Set theory is the first-order theory of equality and one extensional binary rela-
tion, and its importance in twentieth century mathematics arises from the fact
that any mathematical language can be interpreted in it, with varying felici-
tousness. Indeed that is the chief reason why many mathematicians feel they
have to know at least some set theory. Many people (including a lot of set
theorists) feel that the importance of Set Theory’s status as the posessor of a
universal language for mathematics has been exaggerated, and set theory should
be regarded a a branch of mathematics like any other—except more fun.

An extensional relation (“Two things related to the same things are the same
thing”) on a set X can be thought of as an injective map from X into P(X)
(notation!). The word ‘extensional’ has a long and relevant history which I went
over on page 10.

Sets are the simplest extensions.

The fact that everything can be expressed in Set Theory causes it to be
the natural site for the manifestation of foundational problems, and it is in a
course like this that you will encounter them. That doesn’t mean that (pace
the American Mathematical Society’s classification scheme which has things
like “Logic and foundations”) foundational problems are problems of set theory,
merely that set theorists worry about them more than other people do.

145
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8.2 The paradoxes

It’s because of the paradoxes that we need an axiomatic approach.
Ramsey’s distinction between the semantical and the logical paradoxes is
roughly that between those that can and those that can’t be easily formalised.
Naive set theory is the axiom of extensionality—the assumption that € is
extensional—and the axiom scheme of naive comprehension.

(VZ)By)(V2)(z € y «— @)

with ‘y’ not free in ®. (Why does this last clause matter? because o/w we
could take ® to be ‘z € y’!)

The most famous is Russell’s paradox, but there is also Berry’s paradox,
Grelling’s paradox, Mirimanoff’s paradox and the Burali-Forti paradox. Let’s
start with the semantic paradoxes.

Berry

Berry’s paradox is the paradox of the smallest integer not definable in at most
19 syllables.

Grelling and the Barber

Grelling’s paradox is the paradox concerning the word “heterological”. A word
is autological if it is true of itself (“short”, “english”) and heterological if it isn’t
(“long”, “german”). We get a paradox if we ask whether or not ‘heterological’ is
heterological. The status of “autological” seems obscure too. This is a semantic
paradox not a logical paradox, in Ramsey’s terms. This becomes clear if you
think about the word ‘italicised’, which makes it clear that we have to consider
use-mention and type-token distinctions carefully.

The paradox of the Barber is, like Grelling’s paradox, another presentation
of Russell’s paradox. In a certain village lives a barber who shaves all those men
(and only those men) who do not shave themselves. The usual answer is that of
course (!) there is no such village. Another answer could be that the barber is
a woman. Perhaps the best answer is that the barber lives outside the village.

Cantor’s paradox

Cantor’s paradox arises from Cantor’s theorem from section 2.1.6, so we’d better
have another look at that first.

Set theory seems to be a counterexample to the distinction between first-
order and higher-order. The reason why set theory appears to violate this
distinction is that according to set theory, everything is a set! To clarify this we
have to distinguish between arbitrary subsets of the structure we have in mind,
and those subsets that are coded in the structure in some way. In the case of
a model of set theory, there is an obvious way in which subsets are coded: the
model has elements, and a relation €. A subset X of the model M is coded
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by g iff for all y in M, y is in X iff y € 9. Cantor’s theorem tells us that
however we cook up the €-relation of M, there are always subsets which remain
uncoded.

Cantor’s paradox is now the assertion that, because P(V) = V' but there is
no surjection X — P(X), there is no surjection V' — V, though of course there
obviously is! This leads us straight to

Russell’s paradox

because it was by examining the proof of Cantor’s theorem in the case where
the cardinal number being considered is |[V'| that Russell discovered the paradox
that bears his name. Try it yourself: the obvious surjection V' — V is Az.z, and
that way the C of the proof of theorem 6 turns out to be {z : z € z}.

EXERCISE 62 Show that the collection {x : =Jy(z € y € x)} cannot be a set.
Show further that For each n there is a paradox about {x : x ¢™ x}. (Russell’s
paradox is the case n =1 and the paradoz just mentioned is n = 2).

These all seem to be the same. There is a ‘00’ version, known as Mirimanoff’s
paradox. This concerns the collection of all wellfounded sets.
I shall print it in small letters because it’s a bit recherché.

Mirimanoff’s Paradox

The usual way to present this paradox uses the “wrong” definition of wellfound-
edness from page 27: R is wellfounded if there is no sequence (z,, : n € IN) of
elements of the domain of R so that Vn R(z,+1,%,). We say that a set x is
wellfounded if there is no sequence (x,, : n € IN) Vn x,41 € x, with z; = z. We
obtain a paradox by asking whether the collection of wellfounded sets is itself
wellfounded.

A more arresting way of presenting Mirimanoff’s paradox is due to Bill
Zwicker. Consider the collection of all games in which all plays are of finite
length. (A game need not have a finite bound on the lengths of its plays to
belong to this set). Hypergame is the following game. Player I picks a game
of finite length, which I and II then procede to play, IT starting. A paradox
arises if we ask whether or not Hypergame is a game of finite length.

The Liar Paradox

The last of the paradoxes is of course also the first: “I am lying”. Prior has an
interesting non-paradoxical version:

EXERCISE 63 “Everything I say is false”. Why is it not paradoxical: what
does it prove? For discussion of this see Prior op. cit.
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Yablo’s paradox

makes a point about illfoundedness of subformula relation. see the article on
page http://www.dpmms.cam.ac.uk/"tf/

Notice the similarities with the proof of the unsolvability of the halting
problem. My Doktorvater used to say that Euclid’s proof of the infinitude of
the set of primes was a diagonal argument.

8.3 Axioms for Set theory with the axiom of
foundation

This should really be subtitled Safe Sets.

The paradoxes in naive set theory are intolerable, and if we are to use set
theory we will have to explicitly axiomatise it to get a system (or systems) which
we can use without fear of contradiction.

The most widely touted solution to the problem—and the only one we will
have time for in this book—is to pretend that there are no sets except well-
founded sets. What is a wellfounded set? The best answer declares the well-
founded sets as a rectype:

DEFINITION 84 The empty set is a wellfounded set; every collection of well-
founded sets is a wellfounded set. Nothing else is a wellfounded set.

This gives us a formal-looking definition of WF, namely
DEFINITION 85 WF:={Y:P(Y)CY}

It has to be admitted that this definition ought to be vacuous: Cantor’s
theorem tells us that {Y : P(Y) C Y} is empty. The problem lies in the arity of
the constructor: set-of is not of finite arity, nor countable, nor of bounded arity
at all. However at this stage we are merely trying to find out what assumptions
we have to make in order to do the things we want to do, and this discussion
will be carried out in naive set theory. We need to wade through this stage in
order to reach the axioms! We discover what axioms we need by noting what
we do. At any rate this is obviously the correct definition of wellfounded set.

There are two basic facts which we will need frequently, and we had better
have right at the outset a proof that they follow from this definition.

LEMMA 86 If every member of x is wellfounded, so is x.
Proof: Suppose every member of z belongs to all X such that P(X) C X. Then

z C X for all X such that P(X) C X. Then z € P(X) for all such X, whence
z € X for all such X and z is wellfounded as desired. [ |

LEMMA 87 Every member of a wellfounded set is wellfounded.
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If x is wellfounded, and X is an arbitrary set satisfying (Vy)(y C X — y € X)
then obviously z € X. It will suffice to show that x C X as well.

Suppose z € X. We will show that P(X) \ {z} C (X \ {z}), whence
z € (X \ {z}) (since z is wellfounded). This is impossible.

Suppose y C (X \ {z}). Then y C X and y € X. To deduce y € (X \ {z})
it will suffice to show y # z, which would follow from z Z (X \ {z}). But we
have assumed that x € X so a fortiori ¢ (X \ {z}). [ |

COROLLARY 88 FEuvery subset of a wellfounded set is wellfounded

The collection of wellfounded sets is the intersection of all Y such that
P(Y) CY. This means that if we have a property ¢ such that every collection
of things that are ¢ is a set that is itself ¢, then everything in the collection of
wellfounded sets is ¢. That is to say, the following is a good rule of inference:

YY)y ez = P(y)) = ¥(x)
(Ve € WF)(4())
Now if every set is wellfounded (so WF = V) this simplifies to

Vy)(y ez = P(y)) — ()
(Vz)(o(x))

This is €-induction.

We can also prove by €-induction that every set is a member of WF. This
is pretty easy: take ¢ (x) to be “z is wellfounded.”

This shows:

Theorem 89 €-induction iff WF =V

The collection of wellfounded sets is usually called the cumulative hierarchy.

8.4 Zermelo set theory

Set theory with the axiom of foundation is the study of the recursive datatype
WEF. It is a powerful, interesting and important theory—or family of theories.
You may or may not believe that set membership is a wellfounded relation, but
even if you don’t, the rectype WF is an object worthy of study.

But most mathematicians accept ZF not because the rectype of wellfounded
sets is a worthy object of study, but simply because set theory with the axiom
of foundation is really a quick fix to the paradoxes to free us to get on with
the other major application of set theory: the Universal Language. Let us try
to axiomatise the theory of wellfounded sets. That is, for which ¢ do we have
WF | ¢?

e By lemma 86 we know that any set of wellfounded sets is wellfounded, we
know that the wellfounded sets are a model for the axiom of pairing, for
example. This is (Vz)(Vy)(Fz)(Vw)(w € z +— (w € x Vw € y))
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e By lemma 87 we know that every member of a wellfounded set is well-
founded, so if x is wellfounded, so is every member of it, and so is every
member of | Jz. But a set is wellfounded as long as all its members are, so
the sumset of a wellfounded set is wellfounded. This gives us the axiom
of sumset. This is (Vz)(Jy)(Vz)(z € y +— (Fw)(z € w Aw € x))

e If every member of a wellfounded set is wellfounded, and every set of
wellfounded sets is wellfounded, then any subset of a wellfounded set is
wellfounded. This justifies aussonderung also known as separation.
This axiom scheme is (Vz) (V) (Jy)(Vz)(z € y +— (2 € x A ¢(z, W)

e In addition the set of subsets of a wellfounded set is a set of wellfounded
sets and is therefore a wellfounded set itself by lemma 86. This justifies
the axiom of power set, which is (Vz)(Jy)(Vz)(z € y ¢+— 2 C )

e Infinity? Well, if you keep on doing the construction then after infinite
time you will have built infinitely many wellfounded sets, and at all points
thereafter the set of all of the things you have constructed so far will be
an infinite wellfounded set.

Finally the reader should check that WF really is a model for extension-
ality. It’s not hard but it needs to be done.

These are the axioms of Zermelo Set Theory. The only one I haven’t
given explicitly is the axiom of infinity. This has various formulations, but for
technical reasons which will be explained later it is usually given in the form:
(32)(0 € 2 A (Vy € 2)(y U {y} € o).

What we have proved really, by means of lemmas 86 and 87, is that the class
of wellfounded sets is closed under certain operations. All the axioms except
empty set and infinity say that the universe is closed under some operation or
other. You might think that this is the same as the wellfounded sets being a
model for an axiom saying that the operation is always defined. You’d be wrong.
Notice the special status of the power set axiom in this respect. By “downward
skolemheim” (exercise 37) every theory with an infinite model has a countable
model. Any theory that says there is an infinite set and that every set has
a power set inevitably also says that there are uncountable sets. But it must
have countable models! What happens is that the “uncountable” sets are only
uncountable from the point of view of the model but not from the point of view
of the rest of the universe (which is what thinks that the model is countable).
A structure 9t can be a model of the axiom of power set if for every z in M
(the carrier set) there is y in M that contains all subsets of = that happen to
be in M. This is a much weaker condition than containing the power set of z,
and the y in question might well be countable.

The trouble with Zermelo is that if we try to write out a formal proof of the
recursion theorem—and all the proofs so far have been pretty informal—we find
that we need the axiom of transitive containment, and this is not an axiom of
Zermelo.
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DEFINITION 90 A set x is transitive if |Jx C z or (equivalently) © C P(z).

Transitive containment is the axiom that says that every set has a tran-
sitive superset.

One complication is that the definition we gave of “x is wellfounded” really
makes sense only in naive set theory, or at least in Set theories where we cannot
prove Cantor’s theorem. This is because P(X) C X contradicts Cantor’s theo-
rem and therefore we would find that there are no such X and that accordingly
every set is vacuously wellfounded. For example we will see later that we can
add consistently to ZF (strictly: ZF without the axiom of foundation) the as-
sertion that there is an z = {z}, and yet still everything would be wellfounded
according to our old definition. This obliges us to find other characterisations
of wellfounded sets that are not in danger of collapse into triviality in this way.
There are three candidate definitions for wellfoundedness in the context of the
axioms we have so far, and we consider the justification of €-induction for each
of these three concepts of wellfounded set. They all involve the concept of what
set theorists call the transitive closure of a set, TC/(z). This is the collection
of all those things related to = by the transitive closure of €. (Now you un-
derstand why I prefer “ancestral” to “transitive closure”—it avoids overloading
this expression.)

They are

1. “All descending €-chains from z are finite” (every sequence {zg, z1,Z2 ...}
where zop = z and for all i, z;11 € x;, is finite.)

2. Every subset of TC(x) has an €-minimal element.

3. z is nice: this idea is a special case of the R-regularity from theorem 2
when R is €. A set x is regular iff

(Vy)(z €y — Fw € y)(wny =10))

Let’s try to justify €-induction for each of these in turn. In each case we will
assume (Vy € z)(¢(y)) = ¢(x) and let x be an arbitrary set which is wellfounded
in the sense-in-hand and —¢(x).

1. All descending €-chains are finite

Notice that every set that isn’t ¢ has a member that isn’t ¢ so we can
pick an infinite descending €-chain starting at 2. To do this properly we
need DC. which readers will remember says that if R is a relation such
that (Vo € Dom(R))(3y)(R(x,y)) then there is an infinite R-chain.) To
use this axiom we seem to need to take R to be the €-relation restricted
to all the sets that are in z, or in something in z, or in something that is
in something ... etc. That is to say, we seem to need TC({z}) to be a
set.

2. Every subset of TC'(x) has an €-minimal element
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(Notice that this does not—on the face of it at least—commit us to having
TC(x) as a set).

In this case we know that —¢(x) but every subset of TC(x) has an €-
minimal element. We wish to deduce a contradiction. The obvious subset
of TC(z) to consider is {y € TC(z) : =¢(y)} which has no €-minimal
element. The only way to get the existence of this set from our axioms
seems to be to assume the existence of TC(z) and use separation.

3. Regular sets

Consider {z € TC({z}) : =¢(2)}. z is a member of it, so it must be
disjoint from one of its members. Suppose it is disjoint from a member
w. Since —¢(w), w must have members that are also —¢, and all thse
members will be in TC({z}). We know too that none of them are —¢
because they are in w which is disjoint from {z € TC({z}) : ~¢(z)}. So
¢(w) too. Contradiction.

Again we seem to have had no choice but to use an axiom giving us the
existence of transitive closures.

8.5 ZF from Zermelo: replacement, collection
and limitation of size

All these three ways of getting a notion that behave like wellfoundedness but
doesn’t commit us to absurd things like sets being supersets of their own power
sets involve the axiom of transitive closure. (All we need is transitive contain-
ment, because with comprehension we can get transitive closures)

The rectype WF does not have finite character, and although that is not
obviously a prima facie problem, it is a problem in this case, beause there is a
theorem waiting in the wings ready to give us trouble should we ever wish to
pretend that the creation of WF through sufficiently many stages of iteration
ever gets completed. Cantor’s theorem tells us that no set can be equal to its
power set, and a completed WF would certainly be a set equal to its own power
set. So if we believe Cantor’s theorem, we are never going to trust the whole of
WF, but only some fragment of it. What can we say about the fragment that
we trust? What operations is it closed under, for example?

We can ask this question in general, about any rectype lacking finite charac-
ter, and whose completion might be problematic. How much do we trust? One
thing is clear: the part that we trust is certainly going to be downward-closed
under the engendering relation: if there are some things from which z is built
that we do not trust, then we will need to hear some special pleading before we
trust x.

In the case of WF this tells us that if we think that a set exists we must
also think that all its members exist, and so on. In short, we must think that
everything in its transitive closure exists. Does this mean that if we trust =
we should also trust TC(z)? The answer to that depends on how cautious
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we want to be. Are there any other considerations that make trusting T'C(z)
for trustworthy z sound like a sensible thing to do? The ‘limitation of size’
principle says that anything the same size as a set is a set, or alternatively,
anything that isn’t too big is a set. If we think of this as a way of avoiding
the paradoxes this is completely barmy: whether or not a set is paradoxical
seems to have much more to do with how kinky its definition is than to do with
how big it is. In addition, unless we assume the axiom of foundation ab initio
it is perfectly clear that not everything the same size as a wellfounded set is
wellfounded. If z = {} this = is the same size as any other singleton, but it
isn’t wellfounded. However the idea that WF is a model for replacement is not
obviously barmy. Here is the axiom scheme of replacement:

If (Vz)(3ly)(¢(z,y)) then (VX)FY)(V2)(z € Y +— (Fw € X)o(w, 2))

(¢ represents a function, and replacement says “the image of a set in a
function is a set”).

Zermelo-Fraenkel set theory is Zermelo set theory with this new axiom
scheme added.

Notice how this gives us the existence of transitive closures. Fix a set X,
and consider the recursively defined function f that sends 0 to X, and sends
n+1to J(f(n)). Thisis defined on everything in IN. By replacement its range
is a set. We then use the axiom of sumset to get the sumset of the range, which
is of course TC(X).

This does look a bit dodgy: what exactly is the ¢ in the instance of replace-
ment, we are using here? It is to an explanation of this that we now turn.

Bootstrapping the recursion theorem in ZF

Our troubles with transitive containment are not completely over once we adopt
the axiom scheme of replacement. In order to prove the recursion theorem for
€ along any of the lines above we need to know that transitive closures exist.
Now the obvious way to exploit replacement to obtain the transitive closure of
x is to apply An.|J" = to IN to form the set {z,Jz...|J" z...} and take the
union. This uses the recursion theorem, so we must find a way of getting the
transitive closure from the other axioms without using the recursion theorem.

Clearly we aren’t going to be able to just magic {z,Jz...J" z...} into
existence as the intersection of all sets containing A and closed under |J, since
we haven’t got an axiom giving us a set containing x and closed under | J. And
how are we going to define the obvious bijection between {z,Jz...|J"z...}
and IN? This looks like an inductively defined set again and we are back where
we started.

The simplest way to deal with this is the concept of a partial map satisfying
the recursion wherever it can, usually in the slang called an attempt. (We first
encountered this idea in the proof of theorem 3.) We prove by induction on the
naturals that for all n there is a function defined on the naturals up to n which
satisfies the recursion and that this function—or at least the restriction of any
such function to the naturals below n—is unique. The ¢ we want is the formula
that says = and n are related iff every attempt defined at n sends n to x.
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Notice that the collection of (graphs of) attempts partially ordered by set
inclusion forms a chain-complete poset.

8.5.1 The cumulative hierarchy again

Now we have replacement we have transitive closures of sets and can prove the
recursion theorem formally. We can now define the Von Neumann hierarchy
as the range of a function defined on the ordinals by means of the recursion
theorem. Define

Vo :=0; Vag1:=PVa); Va:i= U Vs.
B<A

WF is a wellfounded structure and has a rank function by theorem ??. Then
we prove a connection between these two: by induction the rank of a set is the
least « s.t. it is in V.

We can now come clean on what the Axiom of Infinity really means: every
rectype of finite character is a set. To be precise, every rectype with finitely
many founders and finitely many operations all of finite arity is a set. (And
a countable set at that: recall section 2.1.6). This is for the following reason.
In a set theory with an axiom scheme of separation, to show that a certain
inductively defined collection is a set, it is sufficient to find even one set that is
closed under the requisite operations. The hard part is to prove that there is
even one such set. In the case of IN, we actually needed a special axiom just to
give us this, and this is of course the axiom of infinity. We can then construct
any other rectype of finite character by means of replacement. How do we do
this exactly? Well, we can illustrate by showing that the rectype with founders
Tweedledum and Tweedledee and two binary constructors F' and G is a set.
We do it by coding. Code Tweedledum as 0 and Tweedledee as 1. Values of F’
will be coded by even numbers and values of G' by odd numbers. code(F(z,y))
will be—say— 2°°%¢(2) x 3¢0¢(¥) and code(G(x,y)) will be 5eode(®) x 7eodely),
We can define this map code by a formula of the language of set theory by the
recursion theorem.. code™' is a partial map defined on IN. Then by replacement
the range is a set.

8.5.2 Mostowski

LEMMA 91 (Mostowski’s collapse lemma)

1. If (X, R) is a wellfounded extensional structure then there is a unique
transitive set Y and a unique isomorphism between (X, R) and (Y, €).

2. If (X, R) is a wellfounded structure then there is a transitive set Y and a
homomorphism f:X, R)y — (Y, €).

Proof: We use the recursion theorem. Set 7(z) := {7(y) : yRx}. The desired
Y is simply the range of 7. Y is transitive because nothing ever gets put into
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Y unless all its members have been put in first. If R is extensional then no two
things in X have the same set of R-predecessors and so no two things ever get
sent to the same thing by =.

The philosophically motivated reader may have been worried by the cheerful
and casual way in which we adopted the axiom scheme of replacement. It is
true that it implies the existence of transitive closures, and thereby gives us a
proof of the recursion theorem, but its philosophical motivation is weak. On
the other hand it does also imply lemma 91, and although it won’t have become
apparent yet, lemma 91 is indispensible. The fact that the axiom scheme of
replacement implies it is a very powerful point in its favour. By their deeds ye
shall know them and in the end one has to judge an axiom by its consequences.
This ought to sound to the reader like an instance of the fallacy of affirming the
consequent, but this is actually quite legitimate: pointing out that a candidate
axiom gives a single reason for believing lots of things that we have disparate
reasons for wishing to believe is a very good way of arguing for an axiom. It’s
an example of Occam’s razor. I was attracted to Buddhism because it seemed
to give a single reason for being atheist, vegetarian and pacifist, all of which I
was anyway.

8.6 Implementing the rest of Mathematics

[HOLE Universal Language blah.]

8.6.1 Scott’s trick

The obvious way to implement ordinals is to take them to be isomorphism
classes of wellorderings. Obvious it may be, but sadly it doesn’t work as long
as we have separation. Consider the ordinal number 1. This would be the set
of all wellorderings of length 1. A wellordering is the ordered pair of a set X
and a relation R C X x X which wellorders X. The only wellordering of a
singleton is the empty relation, so the ordinal 1 would be the set of all ordered
pairs ({z},0), which is to say the set of all sets of the form {{{z}}, {{z},0}}.
so U1 would be the set of all sets of the form {{z}} or {{z}, 0}, and so on, so
that |J® 1 would be the universe.

This problem is quite general in ZF: no mathematical object that one nat-
urally thinks of as an isomorphism class can ever be a set. However, as long as
one has the axiom of foundation one exploit do the following trick, due to Dana
Scott.

For each wellordering, there will be a first stage in the cumulative hierarchy
at which a wellordering of that length appears. So we take the ordinal of that
wellordering to be the set of wellorderings isomorphic to it that appear at that
stage in the cumulative hierarchy. This is a set by separation, and will do very
well. And, naturally, the same idea will work for any other mathematical object
arising naturally as an isomorphism class.
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Although this is a useful general idea—and we will use it—it is not actually
the ideal way to implement ordinals in ZF. The implementation of ordinals that
is universally used in ZF (so universally used that many set theorists think that
they are ordinals) is due to Von Neumann.

Von Neumann ordinals

[HOLE “The time has now come for us to show that Von Neumann ordinals
are a faithful implementation of ordinals. Quine calls them counter sets, not
ordinals.” I like the idea of a faithful representation. Should we re-use it7)

We must cast our minds back to the characterisation of ordinal arithmetic as
that part of set theory for which isomorphism of wellorderings is a congruence
relation. The naive thing is to take ordinals to be the equivalence classes. Sadly,
as we have just seen, that doesn’t work. We can use Scott’s trick, and implement
ordinals so that the ordinal of a wellodering (X, <) is the set of all wellorderings
of minimal rank isomorphic to (X, <). However, we can do something nicer.
We know by Mostowski that every wellordering is isomorphic to a transitive set
wellordered by €, so each equivalence class will contain a unique wellordering
(X, €), and we can take these representatives to be ordinals. Having done this
we then notice that all these wellorderings have the same wellordering relation,
and differ only in their carrier sets, so that no two ordinals have the same carrier
set. Thus to distinguish ordinals it is sufficient to examine their carrier sets and
we can throw away the wellordering relation. Thus we can take ordinals to be
transitive sets wellordered by €. This is the Von Neumann implementation
of ordinals.

The other way we can arrive at the Von Neumann implementation is to think
of ordinals as a rectype. Take 0 to be the empty set; take succ(a) to be aU{a}
and sup to be [J.

Once we have done this we can see how to implement IN, and how we use the
axiom of infinity to achieve it. The definition of Nas({Y : 0 € YAS“Y C Y} is
not legitimate, since there is no reason to suppose that {Y : 0 € Y AS“Y C Y}
is a set. however, if there is even one X such that 0 € X A §“X C X then
Y CX:0eYASY CY}existsandisequal to [{Y : 0 € Y AS“Y CY}.
In this context notice that the customary formulation of the axiom of infinity has
been cooked up to say precisely that there is an X such that 0 € X AS“X C X,
where ‘0’ and ‘S’ have the meanings they must have in the Von Neumann
implementation.

8.6.2 Collection

The Axiom scheme of collection states:

(Ve € X)(3Fy)(d(z,y)) = AY) (Ve € X)(Fy € Y)(¥(z,y))

Weaker versions of collection (e.g., for ¢» with only one unrestricted quan-
tifier) are often used in fragments of ZFC engineered for studying particular
phenomena.
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Theorem 92 WF = Collection and Replacement are equivalent.

Proof:

Collection — replacement is easy. To show that replacement implies col-
lection assume replacement and the antecedent of collection, and derive the
conclusion. Thus

(Ve € X)(Fy) (4 (z,y))

Let ¢(z,y) say that y is the set of all z such that ¢ (z,z) and z is of minimal
rank. (Scott’s trick again already!) Clearly ¢ is single-valued so we can invoke
replacement. The Y we want as witness to the “JY” in collection is the sumset
of the Y given us by replacement.

|

Quantifier pushing and squashing

Counting quantifiers is an important pastime in computational complexity. This
is because a quantifier is an injunction to search the entire universe. If by any
chance there are quantifiers that do not correspond to such injunctions then we
should be able to treat them differently (from a syntactic point of view).

What the arithmetic of IN has in common with set theory-with-the-axiom-
of-foundation is that they are both studies of rectypes: IN and WF. Thus a
restricted quantifier (Vy € ) is not an instruction to search the entire universe,
but only that part of it that we have already constructed, or have already been
given'. In the arithmetic of IN we have the notion of a primitive recursive
function. As we saw in chapter 6, the set of primitive recursive functions is
closed under bounded search. The feature common to all these cases is that the
relation we are using to restrict the quantifier is the engendering relation.

This makes it sound as if the availability of a notion of restricted quantifier
depends on our subject matter being organised into a rectype, and this seems
to be true: there is clearly no good notion of restricted quantifier for real or
rational arithmetic.

We will say that a formula containing only restricted quantifiers is Ap. A
Y41 (resp. I,4q) formula is (a formula that is equivalent to) the result of
binding with existential (resp. universal) quantifiers a II,, (resp. ¥,) formula
(or Ag if n =0). A formula is A,, iff it is equivalent to both a II,, formula and
a Y, formula.

(So if a set x has some ¥; property in a universe M, it has it in any end-
extension of M. (we say ¥; properties “generalise upwards”). Dually II; sen-
tences generalise downwards. Ag are absolute (for all transitive structures).)

There is a family of results known collectively as the hierarchy theorem,
to the effect that these sets of formula are all distinct. The axiom of choice
and the continuum hypothesis are IIy but not X,. Large parts of the hierarchy
theorem are easier to prove if we assume foundation: indeed without foundation

INotice that the ‘y’ and the ‘z’ must be distinct variables: the outermost quantifier in
‘(Vz € z)(...)’ is not restricted!
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some parts fail altogether. For example if there is a universal set then every
formula is both IIs and Xs.

DEFINITION 93 "¢”7 is the result of replacing every quantifier Iy or Yy in
¢ by (Fy € x) and (Vy € ).

Notice that ¢® is always Ag even if ¢ isn’t. (Brief reality check: when there
is a universal set any formula 1 is equivalent to both (3z)(Vy)(y € © A ¢*) and
to VzIy(y & = V ¢*) so the hierarchy theorem fails. In these circumstances the
restricted quantifiers are not behaving like no-quantifiers-at-all in the way they
are supposed to in a rectype. This is exactly what you’d expect if the universe
is a set because then there are sets (specifically the universe, which is a member
of itself) which do not belong to the rectype that is the cumulative hierarchy).

How might we expect the difference between bounded and unbounded quan-
tifiers significance to manifest itself logically? Well, the prenex normal form
theorem says that every formula of predicate calculus is equivalent to one with
all its quantifiers at the beginning, so that every atomic subformula is within the
scope of every quantifier. The appropriate manifestation in this context would
be a theorem that every formula is equivalent to one with all its unrestricted
quantifiers pulled out to the front, and every restricted quantifier (and every
atomic subformula) within the scope of every unrestricted quantifier, in an ex-
act analogue of exercise 42. And the axiom scheme of collection seems almost
to have been sent from heaven precisely to prove this theorem, as we shall now
see.

Theorem 94 Given a theory T', which proves collection, for every expression
¢ of the language of set theory, there is an expression ¢’ s.t. T+ ¢ +— ¢' and
every restricted quantifier and every atomic formula occurs within the scope of
all the unrestricted quantifiers.

Proof:
It is simple to check that (Vz)(Yy € z)¢ is the same as (Vy € z)(Vz)¢ (and
similarly 3) so the only hard work involved in the proof is in showing that

(Vy € 2)(Fx)¢

is equivalent to something that has its existential quantifier out at the front.
But by collection we infer

(3X)(Vy € 2)(3z € X)o

and the implication in the other direction is easy. The remaining case is where
we have an unrestricted V within the scope of a restricted 3. But this case is
subsumed under the one we have just dealt with, since it is its negation. After
all, if p +— ¢ then —p +— —q. u

I wrote at the beginning of section 7.2 about end-extensions. To each
notion of limited quantifier there corresponds a notion of end-extension, and
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vice versa. As we saw there, in Set theory the appropriate notion of end-
extension is “New sets: yes; new members of old sets: no!”. In general, whatever
the binary relation involved, an end-extension is one that preserves formulae
without unlimited quantifiers: end-extensions are elementary (see definition 26)
for sentences containing no unbounded quantifiers.

(All this is really to justify restricting our attention to transitive models
when seeking models of bits of ZF. Our desire to restrict attention to transitive
models also explains why Mostowski collapse is so useful)

So the argument for replacement is that it enables us to prove the hierarchy
theorem for the theory of wellfounded sets, which ought to be provable, and
which we don’t seem to be able to prove otherwise.

8.6.3 Reflection

If ® is an expression and M a structure (with domain M), and 7 is a map
from the predicate and function letters of the language of ® that sends an n-
place predicate to a subset of M" (and function letters similarly) then ®™ (the
interpretation of ® in M) is the formula we get from ® by applying the following
rules recursively to ®:

if 1 is an atomic formula R(z; ...z,) then ™ is (1 ...z,) € I(R)
(P A is () A (6M). (=, V similarly)

Fae)™ is Jx(z € M A (™))

(Va)) ™ isVa(z € M — (™).

Subject to some small print (concerning cases where the language of 9 is
not the same as the language of which ® is part) ®™ is supposed to be the same
as M |= @. If @M is true, we say that 9 is a model of ®.

If ¢ < (¢"7) we say v reflects ¢. The scheme of reflection has various
expressions. For example

¢ = (Vo)(Fy)(z € y A ¢Y)
or

¢ — (Va)(35 > a)(¢"?)
I shall prove something apparently slightly stronger than this.

Theorem 95 For every ¢ ZF proves ¢ «— (3 a closed unbounded class of
a)¢Va

Proof:

By induction on quantifiers and connectives. It’s certainly true for ¢ a Ag
formula. Assume V#3y$. Then, in particular, for any old ordinal «, (Vi €
Va)(39)é. Now by collection we infer (IB)(VZ € V,)(3F € B)¢ and we can
take this B to be a V3 getting (38)(VZ € V,)(3F € V3)¢ so we have proved
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(Va)(3B)(VE € Vo) (7 € V3)¢. That is to say, we have proved that the function
Aa.(least B)(VZ € V,) (3 € V3)9) is total.

By induction hypothesis there is a closed unbounded class of ordinals that
reflect ¢. Let X be such a class of ordinals and consider the function Aa.(least
e X)VZ e V,)(3Y € Va)¢). Since § € X this becomes Aa.(least § € X)(VZ €
V) (37 € V3)¢"?). This function (or rather its restriction to X) is a continuous
function from X into itself and will have a closed unbounded class of fixed points
(by exercise 3 section 3.1.3 page 48). A closed unbounded subclass of a closed
unbounded class is itself closed and unbounded. The ordinals in this class reflect
YI3yop. [ ]

Reflection is a kind of omnibus existence theorem for recursive datatypes,
since it tells us that if the universe is closed under a bundle of operations then
there is a set (indeed lots of sets) closed under those same operations.

We needed the function Aa.(least 8 € X)(VZ € V,)(37 € V3)¢9"?) to be
continuous so we could be sure that it had a closed unbounded class of fixed
points. It is continuous because of the finitary nature of ¢. If we were trying
to prove reflection for an infinitary language (of the kind where we can bind
infinitely many variable simultaneously) then the function wouldn’t be contin-
uous. Thinking about what one can retrieve in this situation gets one into the
kind of mental habits that prepare one for large cardinal axioms. As they say
on TV: do not attempt this at home.

COROLLARY 96 ZF not finitely axiomatisable.

Proof: In fact we can show something slightly stronger than this: ZF proves the
consistency of any of its finitely axiomatisable subsystems. If ¢ is the conjunc-
tion of all the axioms of a finite fragment of ZF we have ZF I ¢ so for some [,
Vs [= ¢ n

Zermelo isn’t finitely axiomatisable either, but of course this proof won’t
work. Indeed no satisfactory proof has ever been published and the only proof
known to me is very fiddly.

It is sometimes convenient to accord a kind of shadowy existence to collec-
tions that aren’t sets, particularly if there are obvious intensions of which they
would be the extensions—like the collection of all singletons, or all things which
are equal to themselves (the intensions are pretty straightforward after alll).
We call these things classes or (since some people want to call all collections
“classes”—so that sets are a kind of class) proper classes.

If we allow classes we can reformulate ZF as follows. Add to the language
of set theory a suite of upper-case Roman variables to range over classes as well
as sets. Lower-case variables will continue to range solely over sets as before.
Since classes are sets that are not members of anything we can express “X is
a set” in this language is ‘(3Y)(X € Y)’ and we do not need a new predicate
letter to capture sethood.

Next we add an axiom scheme of class existence: for any expression ¢(z, )

—»

whatever, we have a class of all « such that ¢(z,¥)
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We rewrite all the axioms of ZF except replacement and separation by restict-
ing all quantifiers to range over sets not classes. We can now reduce these two
scheme to single axioms that say “the image of a set in a class is a set” and
“the intersection of a set and a class is a set”. Does this make for a finite set
of axioms? This depends on whether the axiom scheme of class existence can
be deduced from finitely many instances of itself. The version of this scheme
asserted in the last paragraph cannot be reduced to finitely many instances.
This system is commonly known as Morse-Kelley set theory.? However if we
restrict it so that for ¢ to appear in a class existence axiom it must not have
any bound class variables then it can be reduced to finitely many axioms, and
this system is usally known as ‘GB’ (Godel-Bernays). GB is exactly as strong
as ZF, in the sense that for some sensible proof systems at least there is an al-
gorithm which transforms GB-proofs of assertions-about-sets into ZF-proofs of
those same assertions. Indeed, for a suitable gnumbering of proofs, the function
involved is primitive recursive.

Morse-Kelley is actually stronger than GB, and although the details are
hard, it is not hard to see why this might be true. Morse-kelley proves the
existence of more sets, and therefore makes it possible to prove more things by
induction.

EXERCISE 64 Von Neumann had an axiom which makes sense in the context
of Set-Theory-with-classes.

A class is a set iff it is not the same size as V

Prove that Von Neumann’s axiom is equivalent to replacement plus choice.

Finally some important trivialities:

Replacement gives bigger sets

Using replacement we can prove the existence of the set {IN,P(IN), P?(IN)...}
and then its sumset, which is of course bigger than P™(IN) for any n € IN. What
is perhaps slightly more surprising is that replacement enables us to prove novel
results, not provable in Zermelo. about small sets whose existence even Zermelo
set theory can prove. Thus there are theorems of Analysis provable in ZF that
are not provable in Zermelo.

[HOLE Give a few examples: Borel determinacy, Friedman’s finite form of
Kruskal’s theorem?)

8.7 Some elementary cardinal arithmetic

PROPOSITION 97 If z can be wellordered, |x|? = ||

2Tt was actually first spelled out by Wang and Mostowski.
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Proof:
Here is an obvious strategy. It doesn’t work, but the idea is a good one, and
will lead us to one that does. Notice that the equivalence relation |a| = |3] is

a congruence relation for all the operations of ordinal arithmetic. Use this to
prove by induction on « that (Va)(Ja| = |a?]). The induction step at successor

ordinals seems fine: if || = |a?] then |(a+ 1)?| = |a® + a + 1] (at least if a > w
so that 1 +a = a.) Then |a? + a + 1| = |a + a + 1] and clearly (again, as long
as @ > w) | +a+1| = |a+1| . However Aa.a? is not continuous and so the

argument breaks down at limit ordinals. But this is retrievable.

Consider the following (origami proof) ordering. Order {8 : f < a} x {5 :
B < a} as follows. Order pairs in the graph of > lexicographically, so that if
B > vand ' > v then put (8, ) earlier than (5", 7} iff 8 < B or f = B'Ay < ~'.
(That is what the vertical lines in the bottom right half of figure 8.1 are doing).

Order pairs in the graph of < in the colex ordering, so that if 5 < v and
B' < v then put (B,~) earlier than (8',7') iff v <+ ory =+ A < '. (That
is what the horizontal lines in the top left half of figure 8.1 are doing). At this
point we have two disjoint sets, both wellordered, and the operation of flipping
ordered pairs is an isomorphism between them.

Then place every pair next to its flip. (That is to say, fold top left corner
down onto bottom right corner).

This is almost a wellordering, but we have (3,v) and (v, ) sitting on top
of each other, so it is not antisymmetric. Ordain that in each case the first of
these two pairs shall be the one that is in the graph of <. If we interleave two
wellorderings of length A for A limit, we clearly get a wellordering of length A as
a result. If we interleave two wellorderings of length A+ n, we get a wellordering
of length \ + 2n.

Let us say that this wellordering of {# : 8 < a} x {8 : 8 < a} is of
length f(a). f is a continuous function f : On — On such that f(a +1) =
f(a) + a -2+ 1. [HOLE must prove it’s cts!]] This will have the property that
|f(a)] = |@?|. Because f is continuous we will be able to prove by induction
on a that (Va)(|la| = |f(a)|). But—because we know that |f(a)| = |a?|—the
proof is now complete.

|

LEMMA 98 Bernstein’s lemma.

In figure 8.2 we see a representation of a set of size |z x y| split into two
pieces of size a and b. Consider the U-shaped area labelled ‘b’, and its projection
onto the horizontal axis. Does it cover the whole of the horizontal axis? If it
does, then b >* y. If it doesn’t then there is a line parallel to the other axis
lying entirely within the complement of b, namely a, whence z < a. So we have
proved

(@xy=a+b) = (b>"yVe<y)

DEFINITION 99 .
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Figure 8.1: || = |a]

1. An aleph is a cardinal of a wellordered set. N(a) is the least aleph £ .

2. We write |A| <* |B|’ when there is a surjection of B onto A (or A is
empty).

3. N*(a) is the least aleph that is not <* a.

4. If k is an aleph then kYt is the next aleph, which is of course the same as
N(k).

There is no notation for the first ordinal that is not the length of a wellorder-
ing of any set of size < a.. If we want ‘R(a)’ to denote this object we really do
have to exploit the nasty hacky identification of cardinals with initial ordinals.

We’d better show that N(«) is always defined! The collection of alephs is
naturally wellordered, since to each aleph there corresponds an initial ordinal,
so there is no problem about leastness. Existence needs to be checked. We do
that next.

Theorem 100 Hartogs’ theorem. R(«a) is always defined. In fact (Sierpinksi)
a2
N(a) <227 .

Let A be a set of size a. Every wellordering of any subset of A is an element
of P(A x A). Therefore the set of all wellorderings of subsets of A is a subset
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Figure 8.2: Bernstein’s lemma

of P(A x A). Therefore the quotient, the set of all isomorphism classes of
wellorderings of subsets of A is a quotient of P(A x A) and accordingly injects
into P?(A x A). This structure is naturally wellordered to the length of the sup
of the lengths of the wellorderings represented in it, namely the smallest ordinal
not the length of any wellordering of A. ]

Notice that the axioms of ZF are such that if we ever succeed in proving the
existence of set with a given property then by keeping track of the axioms we
have used we can usually read off an upper bound for the size of the set whose
existence we have proved. This is what has just happened here.

EXERCISE 65 By coding a wellordering as the set of its initial segments show
how to prove the following variant of Hartogs’.
R(a) < 92"

Recalling the definition of the the cardinal-valued function X*(«) from def-
inition 99, find some upper bounds and some <*-upper bounds for R(a) and
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R*(a).

One immediate and standard application of Hartogs’ is the fact that Com-
parability of cardinals implies AC. (Think about a and N(«). Another is that
GCH implies AC. GCH is the Generalised Continuum Hypothesis—the asser-
tion that for all cardinals a (not just Rg) there are no cardinals strictly between
a and 2%. One proves this by thinking about a + X(a) which by Hartogs’ must

be bigger than « but smaller than 22° .

EXERCISE 66 Not provable without AC' that every infinite set has a countable
subset, but every infinite subset of ® has a countable partition.

COROLLARY 101 If a = o2 for all cardinals o then AC.

Proof: Assume (a = o?) for all cardinals a. Now let o be a cardinal that is not
an aleph. Then we have

(Va)(a + R(a))? = (a + R(a)).
Expand the left hand side to get
o +2-a- (X)) + (R(a))?
which can be simplified progessively to
a+2-a-(Na)+NXa)

(using (V cardinals a)(a = a?)) and then (since if a = o then certainly a = 2-«)

a+a-(R(a)) + R(a)
which eventually becomes

a- (R(a))

Then

a- (R(e)) = a+N(a)

and we can use Bernstein’s lemma to infer a <* X(a) V R(a) < a. The second
disjunct cannot happen (by definition of X(«)) and the first implies that « is an
aleph.

|

COROLLARY 102 AC is equivalent to the assertion that o = o2 for all infinite
cardinals.

In fact AC follows even from the apparently much weaker assertion that
squaring of cardinals is merely injective. But that is beyond the scope of this
book.

Let us now return to Bernstein’s lemma. A simple induction on IN shows us
that if {4; : i < n} and {B; : i < n} are families of sets with a map from the
union of the Bs onto the product of the As then something happens. We can
even get a result on infinite sums and products. But we will need AC.
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Theorem 103 The Jordan-Kénig theorem (AC):
If{A;:i € I} and {B; : i € I} are families of sets such that (Vi € I)(|A;| £*|Bil)

then
4l £271T] Bl

i€l iel

Proof:

Suppose not, and that f : U;c; 4i — [l;c; Bi- We show that f is not
onto. For each i € I let f; : A; — B; be Axa,.(f(x)(i)). f; cannot be onto by
hypothesis so pick (remember we are using AC) n; to be a member of B;\ f; “A;.
Now we find that the function Ai.n; is not in the range of f, for otherwise if
f(a) = Ai.n; where a € A; say, then fi(a) = (A\z.(f(2))(#))(a) = (f(a))(i) =
(Ai.n;)(i) = n; contradicting choice of n;.

|

The Jordan-Konig theorem is equivalent to AC, because it implies that the
product of nonempty sets is nonempty.

COROLLARY 104 2% # X,

Proof: Take the A; to be of size X;, for i € IN and the B; to be all of size 2%°,
and note that (2%0)%o = 2%o,

EXERCISE 67 Prove that a < af(®),

Writing ‘o < a¢f(®) like this is a bit slovenly. Clearly a and af(®) are to
be cardinals, so the exponent, ¢f(«) has to be a cardinal too. But it is ordinals
that have cofinalities, not cardinals, and cofinalities are ordinals not cardinals!
Thus this notation exploits the tacit identification of the cardinal a with the
initial ordinal corresponding to it, and the similar identification of the ordinal
cf () with the corresponding aleph. Slovenly it may be, but it is universally
practiced.

8.8 Independence Proofs

Although clearly some instances of the axiom schemes of separation and replace-
ment, can be derived from others, it is standard that the remaining axioms of
ZF are independent from each other. For any other axiom A we can show that
ZF\ At A. And for replacement we can show that ZF'\ replacement does
not imply all instances of replacement, though it does prove some. For some of
these axioms ZF actually proves the consistency of ZF'\ A in the sense that ZF
proves the existence of a set that is a model of ZF \ A.

A device which turns up in many of these independence proofs is the idea of
the set of things that are hereditarily ¢, where ¢ is a one-place predicate. The
intuition is that z is hereditarily ¢ if everything in T'C'(z) is ¢. Let us have a
formal definition.
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DEFINITION 105 . P.(z) :={y Cz: |y| < k}; Hy :=(W{y: Ps(y) Cy}

Pox) = {y Cx: ()} Hy=:( {y:Psly) Cy}

A word is in order on the definition and the notation involved. The use of
the set-forming bracket inside the ‘() is naughty: in general there is no reason
to suppose that the collection of all y such that Py(y) C y is a set. However its
intersection will be a set—as long as it’s nonempty! And if there is even one z
such that Pg(z) C = then {y C = : Py(y) C y} will have the same intersection as
{y : P4(y) C y} and so no harm is done. But this depends on there being such
an x. If there is, we are in the same situation we were with the implementation
of IN. If not, then the collection Hy will be a proper class and we have to define
it as the collection of those = with the property that everything in TC(z) is of
size < k. If Hy is a set then the two definitions are of course equivalent, but
if it isn’t, it is only the definition in terms of T'C' that works. The definition in
terms of T'C' is the standard one, but I find that my definition is more helpful to
people who are used to thinking in terms of inductive definitions. After all, Hy
is a rectype. It has an empty set of founders and one (infinitary!) constructor
that says that a subset of Hy that is itself ¢ is also in Hy.

EXERCISE 68 .

1. Show that if k is reqular and we have AC then we can take H, to be the
set of x s.t. |TC(z)| < k.

2. Show that the collection of hereditarily wellordered sets isn’t a set.

REMARK 106 If ¢(x) — &(f“x) for all x and f then Hy is a model for
replacement.

Proof:

For Hy to be a model of replacement it is sufficient that if x € Hy and
f:Hy — Hy is defined by a formula with parameters from Hy only, all of whose
quantifiers are restricted to Hy then f“z is also in Hy. But this condition is met
because by assumption a surjective image of a set that is ¢ is also ¢: indeed,
we didn’t even need the italicised condition. ]

8.8.1 Replacement

The only independence proof that we will give which doesn’t use an Hy is the
independence of the axiom scheme of replacement. Let’s get it out of the way
now.

Vio+w 18 @ model for all the axioms except replacement. It contains wellorder-
ings of length w but cannot contain {V,,;, : n € IN} because we can use the
axiom of sumset (and V4, is clearly a model for the axiom of sumset!) to get
Viotw-

Readers are encouraged to check the details for themselves to gain familiarity
with the techniques involved.
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8.8.2 Power set

The set we need to prove the independence of power set is Hy,, but much of
what we need to say about Hy, generalises to other H,, so we will give a slightly
more general treatment.

Although it is not obvious, H, is always a set according to ZF. The proof
does not need (much) AC, but the axiom of foundation is essential.?

Theorem 107 If k is an aleph, |H,+| < 2%.

Proof:

Let X be a set of size 2".

Assume enough AC to be sure that |X| = [P.+(X)| because kT is well-
behaved. We need a bit of choice to do this because k2 = & is not enough. For
example there are 2%° w-sequences of reals, since there are (2%¥0)Ro = 2%oXo —
2% but that doesn’t tell us there are precisely 2% countable sets of reals. There
are clearly > 2% countable sets of reals, and the argument we have just sketched
shows that there are <* 280 countable sets of reals. To infer that there are
precisely 2%° countable sets of reals from the fact that there are 2% w-sequences
of reals we would need to be able to pick, for each countable set of reals, a
wellordering of it to length w.

Let us fix an injection 7 : P,.+(X) — X. We construct an injection h :
H,+ — X by recursion thus: h(z) := w(h“z). By considering a member of
H,.+ of minimal rank not in the range of h we show easily that h is total. It is
injective because 7 is one-one. The range of h is a set by comprehension, and
so its domain (which is H,+) is also a set, by replacement. [ |

REMARK 108 |Hy,|= 2%

Proof: We have just seen |Hy, | < 2%°. The other direction follows immediately
from the fact that V,,,; is a subset of Hy, of size 2%, [ |

There is another way of proving that Hy, is a set. Recall that A\z. Py, (z) is
not w-continuous. If you think about this for a while you will realise that this
function is a-continuous as long as the cofinality of « is not a countable ordinal.
The most obvious such ordinal is wy. (Look back at remark 80). So all we have
to do is iterate this function w; times and we will reach a fixed point. Hy, will
be a subset of this fixed point and will be a set by comprehension.

Hy, gives us a model of ZF\ power set. The axiom of infinity will hold
because there are genuinely infinite sets in Hy,. If X is such a set then there
will be a bijection from X onto a proper subset of itself, and this bijection (at
least if our ordered pairs are Wiener-Kuratowski) will be a hereditarily countable
set. And we have been assuming the axiom of choice so the union of countable

3We will see soon that if we do not assume the axiom of foundation we can easily construct
models containing as many Quine atoms (sets x = {z}) as we want. Since these objects are
clearly hereditarily of size less than k1 there is no point in asking about the size or sethood
of Hy, unless we assume some form of foundation.



8.8. INDEPENDENCE PROOFS 169

many elements of Hy, is also an element of Hy,, so it is a model of the axiom
of sumset.

Everything in Hy, is countable and therefore wellordered, and under most
implementation of pairing functions, the wellorderings will be in Hy, too, so
Hy, is a model of AC, even if AC was not true in the model in which we start.

8.8.3 Independence of the axiom of infinity

Hy, provides a model for all the axioms of ZF except infinity and thereby proves
the independence of the axiom of infinity. (We constructed a copy of Hy, on
page 35).

That status of AC in Hy, is like its status in Hy,. Everything in Hy, is finite
and therefore wellordered, and under most implementation of pairing functions,
the wellorderings will be in Hy, too, so Hy, is a model of AC, even if AC was
not true in the model in which we start. This is in contrast to the situation
obtaining with the countermodels to sumset and foundation: the truth-value of
AC in those models is the same as its truth-value in the model we start.

8.8.4 Sumset

i numbers are defined by setting i, := |V,|, or recursively by ig := Ro;igt1 :=
2= taking sups at limits. Let us for the moment say that a set of size less that
i, is small.

Then H;, the collection of hereditarily small sets, proves the independence
of the axiom of sumset. This is because there are wellorderings of length w + w
inside V,,4,, for n small, so by replacement {V,, : @« < w + w} is a set. Indeed
it is a hereditarily small set. But [J{V4 : @ < w + w} is not hereditarily small,
being of size i,,.

EXERCISE 69 FEstablish that the collection of hereditarily small sets is a set.

8.8.5 Foundation

For the independence of the axiom of foundation and the axiom of choice we
need a Rieger-Bernays models for independence of foundation.

If (V, R) is a structure for the language of set theory, and 7 is any permuta-
tion of V, then we say z R, y iff z R w(y). (V,R,) is a permutation model of
(V,R). We call it V™. Alternatively we could define ®™ as the result of replac-
ing every atomic wif z € y in ® by z € m(y). We do not rewrite equations in
this operation: = is a logical constant not a predicate letter. The result of our
definitions is that (V, R) = ®™ iff (V, R:) = ®. Although it is possible to give a
more general treatment we will keep things simple by using only permutations
whose graphs are sets.

A wif ¢ is stratified iff we can find a stratification for it, namely a map f
from its variables (after relettering where appropriate) to IN such that if the
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atomic wif ‘z = y’ occurs in ¢ then f(‘z’) = f(‘y’), and if ‘¢ € y’ occurs in ¢
then f(‘y’) = f(‘=’) + 1.

To discuss these topics properly we will also need the notation j =4 AfAz.(f“z).
The map j is a group homomorphism: j(mo) = (j7)(jo).

We shall start with a lemma and a definition, both due to Henson [1973].
The definition arises from the need to tidy up ®". A given occurrence of a
variable ‘z’ which occurs in ‘®”’ may be prefixed by ‘7’ or not, depending on
whether or not that particular occurrence of ‘z’ is after an ‘€’. This is messy.
If there were a family of rewriting rules around that we could use to replace
x € 7(y) by o(z) € y(y) for various other o and v then we might be able to
rewrite our atomic subformulae to such an extent that for each variable, all its
occurences have the same prefix.

Why bother? Because once a formula has been coerced into this form, every
time we find a quantifier Qy in it, we know that all occurrences of y within its
scope have the same prefix. As long as that prefix denotes a permutation then
we can simply remove the prefixes! This is because (Qz)(...o(z)...) is the same
as (Qz)(...z...). If we can do this for all variables, then 7 has disappeared
completely from our calculations and we have an invariance result. When can
we do this?

Henson’s insight was as follows. Suppose we have a stratification for ¢ and
permutations 7, (for all n used in the stratification) related somehow to 7, so
that, for each n,

x €T7(y) <= Ta(x) € Tnr1(y)-

then by replacing ‘ € 7(y) ’ by ¢ 7,(2) € Tn+1(y) > whenever ‘z’ has been as-
signed the subscript n, every occurrence of ‘z’ in ¢ ®” * will have the same prefix.
Next we will want to know that 7, is a permutation, so that in any wif in which
‘z” occurs bound—(Vz)(. .. 7, () . . . )—it can be relettered (Vz)(...z...) so that
‘T’ has been eliminated from the bound variables. It is not hard to check that
the definition we need to make this work is as follows

DEFINITION 109 79 = identity, 7,41 = (j"7)7Tn.

This definition is satisfactory as long as j™(7) is always a permutation of V
whenever 7 is, for each n. But if the graph of 7 is a set we need have no worries
on that score. This gives us immediately a proof of the following result.
LEMMA 110 Henson [1973]. Let ® be stratified with free variables ‘c1’, ...,
‘tn,’, where ‘x;’ has been assigned an integer k; in some stratification. Let T be
a setlike permutation and V' any model of NF. Then

(VE)V | (P(2)" «— (11, (#1) - . . Tk, (T0)))-

In the case where @ is closed and stratified, we infer that if 7 is a permutation
whose graph is a set then

VE®+—— .
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REMARK 111 (Scott [1962]).
If (V,€) | ZF and 7' is a permutation of V whose graph is a set then
(V,er) E ZF.

Proof: The stratified axioms are no problem. The only unstratified axiom
scheme is replacement. It is easy enough to check for any ¢ that if Vz3ly¢ then
Vz3Alyo™, so that for any set X the image of X in ¢” is also a set. Call it Y.
But then 77 (Y) is the image-of-X-under-¢ (in the sense of V7). [ |

We now take 7 to be the transposition (), {0}). In 9™ the old empty set
has become a Quine atom: an object identical to its own singleton: = €, §) «—
zen(0) ={0}. Soz €, 0 +— x=0. So M™ is a model for all the axioms of
ZF except foundation.

8.8.6 Choice

We start with a model of ZF + foundation, and use Rieger-Bernays model
methods to obtain a permutation model with a countable set A of Quine atoms.
The permutation we use to achieve this is the product of all transpositions
(n,{n}) for n € IN". A will be a basis for the illfounded sets in the sense
that any class X lacking an €-minimal element contains a member of A. The
standard way of adjoining countably many Quine atoms ensures this, though
I won’t prove it. Since the elements of A are Quine atoms every permutation
of A is an €-automorphism of A, and since they form a basis we can extend
any permutation o of A to a unique €-automorphism of V' in the obvious way:
set o(x) =: o“z. Notice that the collection of sets that this definition does not
reach has no €-minimal member if nonempty, and so it must contain a Quine
atom. But o by hypothesis is defined on Quine atoms. We will write ‘(a, b)’
also for the unique automorphism to which the transposition extends.

Every set z gives rise to an equivalence relation on atoms. Say a ~,. bif (a,b)
fixes . We say z is of (or has) finite support if ~, has a cofinite equivalence
class. (It can have only one, if any). The union of the (finitely many) remaining
(finite) equivalence classes is the support of . Does that mean that z is of
finite support iff the transitive closure T'C'(z) contains finitely many atoms?
Well, if TC'(z) contains only finitely many atoms then z is of finite support (z
clearly can’t tell apart the cofinitely many atoms not in T'C'(z)) but the converse
is not true: x can be of finite support if TC(z) contains cofinitely many atoms.
(Though that isn’t a sufficient condition for = to be of finite support!!)*

It would be nice if the class of sets of finite support gave us a model of
something sensible, but extensionality fails: P(A) and the set {X C A : X is
of finite support} are both of finite support and have the same members with
finite support. We have to consider the class of elements hereditarily of finite
support. Let’s call it HF. This time we do get a model of ZF.

Let f be a definable function. Notice that if (a,b) fixes every argument to
f, it must also fix its value, by single-valuedness of f. This has the immediate

4A counterexample: wellorder cofinitely many atoms. The graph of the wellorder has
cofinitely many atoms in its transitive closure, but they are all inequivalent.
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consequence that HF is closed under all definable operations: sets that are of
finite support are of finite support in virtue of a cofinite set of atoms that they
cannot discriminate. So if ; ... x, are all of finite support, then f(z;...z,)
is in HF in virtue of the intersection of the cofinite sets of atoms associated
with z; ... z,, and the intersection of finitely many cofinite sets is cofinite.
This takes care of all the axioms of ZF except infinity. Since every wellfounded
set is fixed under all automorphisms, HF' will contain all wellfounded sets so
since there was an infinite wellfounded set in the model we started with H F" will
contain that infinite set and will model infinity. Finally H F satisfies replacement
because of remark 106.

We now have a very simple independence proof of AC from ZF'. Consider
the set of (unordered) pairs of atoms. This set is in HF'. But clearly no selection
function for it can be. Suppose f is a selection function. It picks a (say) from
{a,b}. Then f is not fixed by (a,b). Clearly the equivalence classes of ~; are
going to be singletons, and ~y is going to be of infinite index and f is not of
finite support.

So the axiom of choice for countable sets of pairs fails. Since this axiom is
about the weakest version of AC known to man, this is pretty good. The slight
drawback is that we have had to drop foundation to achieve it. On the other
hand the failure of foundation is not terribly grave: the only illfounded sets are
those with a Quine atom in their transitive closures, so there are no sets that
are gratuitously illfounded: there is a basis of countably many Quine atoms.

8.9 The axiom of Choice

Why do people believe the axiom of choice anyway? The things that make the
axiom of choice look so plausible (the countable collection of pairs of socks in
Russell’s Introduction to Mathematical Philosophy p.126) are very misleading.
One is tempted to say “It’s obvious that the union of countably many pairs is
countable, and if we need the axiom of choice to prove it then the axiom of
choice we’d better have”. The point is not that this is a fallacy of affirming the
consequent: there is nothing wrong with arguing for an axiom on the grounds
that it has a lot of obviously true consequences that do not appear to follow
from the other axioms we have settled on. We saw this in connection with
lemma 91 and the axiom scheme of replacement. The problem here is that the
consequences of the axiom of choice are not obviously true, but can be easily
confused with things that are. Any subset of the plane or of # that is a union
of countably many pairs is indeed countable, but that is not the same as saying
that any union of countably many pairs is countable. If the socks from countably
many pairs of socks are dispersed through 2 then the interior of every sock
must contain a rational number, and there will be a least rational number inside
each sock, and this can be used to count the socks. So this is a proof that there
are countably many socks in countably many pairs of socks:® it is not a proof

50r, more correctly, we can prove the following without any use of AC at all: if A is a
family of disjoint subsets of R, each with nonempty interior, and A has a countably infinite
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of the axiom of choice for countably many pairs.

Another—common and important—example of a spuriously plausible asser-
tion is the claim that a union of countably many countable sets is countable.
The most illuminating discussion of this is one I learned from Conway (oral
tradition). Conway distinguishes between a counted set, which is a structure
consisting of a set with a bijection onto IN, and a countable set, which is a naked
set that just happens to be the same size as IN. As Conway says (elliptically but
memorably): a counted union of counted sets is counted; a countable union of
counted sets is countable, but a counted union of countable sets, and a fortiori
a countable union of countable sets could—on the face of it—be anything under
the sun. The fact that is obvious is not ‘a countable union of countable sets is
countable’ but the quite distinct ‘a counted union of counted sets is counted’.

Put like this, it sounds as if failures of the axiom of choice happen only
when we have imperfect information about sets. If we were God we would be
able to wellorder the universe and we would be able to see that a union of
countably many countable sets is countable. What else could it possibly be?
The counterexample we have contrived seems indeed contrived, and to happen
only because we cannot tell Quine atoms apart. But God can, so God knows that
AC is true. In philosophical terminology, people who believe that mathematical
objects are real are realists. It certainly seems to be the case that realists also
tend to believe the axiom of choice. They believe it for substantially the same
reasons that God knows that AC is true. If mathematical objects are real then
questions about their sizes must have real answers. The only possible answer
to the question about the number of socks seems to be Ny, and if the only way
to infer that is to assume AC then realists have a good reason to believe AC.

8.9.1 AC and constructive reasoning

The idea that independence of AC is connected with incomplete information
should remind us of constructive reasoning: when we reason constructively we
deliberately refrain from exploiting certain kinds of information. This would
lead us to expect that AC should sit ill with constructive reasoning. This turns
out to be the case: the axiom of choice implies the law of excluded middle.
Indeed the law of excluded middle follows if there is even one nontrivial well-
founded relation.

8.9.2 The consistency of the axiom of choice?

The idea that if we have perfect information about sets we can wellorder them
gives rise to an idea for a consistency proof for the axiom of choice. Recall
the rectype WF: its sole constructor adds at each stage arbitrary sets of what
has been constructed at earlier stages. If we modify the construction so that
at each stage we add only those sets-of-what-has-been-constructed-so-far about
which we have a great deal of information then with luck we will end up with

partition into pairs, then A is countable.
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a model in which every set has a description of some sort, and in which we can
distinguish socks ad Iib. and in which the axiom of choice is true. This strategy
can be made to work, but there is no space for all the details here.

Exercises

1.

Define E on IN by: n E m iff the n** bit in the binary expansion of m
is 1 (Remember to start counting at the Oth bit!!) Do you recognise this
structure?

. If you got that easily consider the following more complicated version:

n Eo m iff either m is even and the n'* bit in the binary expansion of
m/2is 1 or m is odd and the n'”* bit in the binary expansion of (m —1)/2
is 0. You have almost certainly never seen this structure before: what can
you say about it?

An antimorphism is a permutation 7 of V sothat Ve y x € y <= 7 (z) ¢
7(y). Prove (without using the axiom of foundation) that no model of ZF
has an antimorphism.

(i) Find an antimorphism of the second structure in exercise 2.

(ii) Is it unique? (hint: Consider the dual of the preceding structure, i.e.,
the natural numbers with the relation n Ep~ m iff either m is even
and the n'" bit in the binary expansion of m/2 is 0 or m is odd and
the n'" bit in the binary expansion of (m —1)/2 is 1. Prove that this
is isomorphic to the naturals with Ep)

Let X be a transitive set. If R is an equivalence relation on X and Y, Z are
subsets of X we can define R'(Y, 2) iff (Vy € Y)(3z € Z)(R(y,2)) A (Vz €
Z)(Jy € Y)(R(y,z)). Check that the restriction of R to X is also an
equivalence relation on X.

Show that this operation on equivalence relations has a fixed point. For
any fixed point, one can take a quotient. Show how to define a membership
relation on the quotient in a natural way, and that the result is a model
of extensionality as well.

This construction is of particular interest if X is a V,, and the fixed point
is the greatest fixed point. What can you say about the quotient in this
case?

. Use AC to show that every chain-complete poset is a CPO.
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