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Abstract
In this paper we give some results about primitive integral elements �

in the family of bicyclic biquadratic �elds Lc = Q
�p

(c� 2) c;
p
(c+ 4) c

�
which have index of the form � (�) = 2a3b and coprime coordinates in
given integral bases. Precisely, we show that if c � 11 and � is an element
with index � (�) = 2a3b � c+1, then � is an element with minimal index
� (�) = � (Lc) = 12. We also show that for every integer C0 � 3 we can
�nd e¤ectively computable constants M0 (C0) and N0 (C0) such that if
c � C0, than there are no elements � with index of the form � (�) = 2a3b;
where a > M (C0) or b > N (C0) :

1 Introduction

Let � be a primitive integral element of an algebraic number �eld K of degree
n with ring of integers OK . Then index of � is de�ned as index of subgroup
Z [�]+ in group O+K

� (�) =
�
O+K : Z [�]

+
�
;

where O+K and Z [�]+ denote the additive groups of corresponding rings. The
minimal index � (K) of the �eld K we de�ne as the minimum of the indices
of all primitive integers in the �eld K: The �eld index m (K) is the greatest
common divisor of indices also taken for all primitive integers of K.
Let f1; !2; :::; !ng be an arbitrary integral basis of K: Then discriminant of

corresponding linear form L (X) = X1 +!2X2 + :::+!nXn can be rewritten as

DK=Q (L (X)) = (I (X2; :::; Xn))
2
DK ;

where DK is discriminant of the �eld K and I (X2; :::; Xn) is a homogeneous
polynomial in n� 1 variables of degree n (n� 1) =2 with rational integer coe¢ -
cients. The polynomial I (X2; :::; Xn) is called the index form associated to the
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integral basis f1; !2; :::; !ng. If the primitive integral element � is represented in
that integral basis as � = x1+x2!2+ :::+xn!n; x1; x2; :::xn 2 Z; then the index
of � is just � (�) = jI (x2; :::; xn)j : Hence, the problem of determining elements
of given index � 2 N can be reduced to the solving index form equations

I (x2; :::; xn) = �� in x2; :::; xn 2 Z:

Bicyclic biquadratic �elds are quartic �elds of the type Q (
p
m;
p
n), where m;n

are distinct square-free rational integers. These �elds were considered several
authors. M.N.Gras, and F.Tanoe [9] have found necessary and su¢ cient con-
ditions for biquadratic �elds being monogenic. I. Gaál, A. Peth½o and M.Pohst
[7] gave an algorithm for determining the minimal index and all elements with
minimal index in the totally real case using the integral basis described by
K. S.Williams [14]. G.Nyul [12] classi�ed all monogene totally complex bi-
quadratic �elds and gave explicitly all generators of power integral bases in
them. In [10] and [11] the author has determined the minimal index and all
elements with minimal index for three in�nite families of totally real bicyclic
biquadratic �elds. Further, I. Gaál and G.Nyul [8] provided an e¢ cient algo-
rithm for determining elements of index divisible by �xed primes in biquadratic
number �elds.
In [11] the author proved following theorem.

Theorem 1 Let c � 3 be an integer such that c � 1 or 3 (mod 6) and c; c� 2;
c+ 4 are square-free integers. Then

Lc = Q
�p

c (c� 2);
p
c (c+ 4)

�
(1)

is a totally real bicyclic biquadratic �eld and

i) its �eld index is m (Lc) = 1 for all c;

ii) the minimal index of Lc is � (Lc) = 12 if c � 7 and � (Lc) = 1 if c = 3;

iii) all integral elements with minimal index are given by

x1+x2
p
(c� 2) (c+ 4)+x3

p
(c� 2) (c+ 4) +

p
(c� 2) c

2
+x4

1 +
p
c (c+ 4)

2
;

(2)
where x1 2 Z, (x2; x3; x4) = � (0; 1; 1) ;� (0; 1;�1) ;� (1;�1;�1) ;� (1;�1; 1)
if c � 7 and (x2; x3; x4) = � (�1; 1; 0) ;� (0; 1; 0) if c = 3:

Since the minimal index of the �eld (1) is of the form 2a3b, we wonder if
there exist primitive integral elements � with the index � (�) of this form except
those with the minimal index. It su¢ ces to observe elements � of the form (2)
with gcd (x2; x3; x4) = 1 since the index form I (x2; x3; x4) is a homogeneous
polynomial of degree 6. For a (partial) answer on this question we need some
additional conditions: an upper bound for the index � (�) or an upper bound
for the parameter c:
The main results of the present paper are given in the following theorems:
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Theorem 2 Let c � 3 be an integer such that c � 1 or 3 (mod 6) and c; c� 2;
c+4 are square-free integers. If � is a primitive integral element of the �eld (1)
given by (2), where x1; x2; x3; x4 2 Z with gcd (x2; x3; x4) = 1 and index of �
is of the form � (�) = 2a3b, where a � 0; b � 0 are integers, then the following
holds:

i) If c � 11 and � (�) � c+ 1, then � (�) = 12: Furthermore, if c < 11 and
� (�) � 12, then � (�) = 12 if c 6= 3 and � (�) = 1 or � (�) = 12 if c = 3.

ii) All elements � with � (�) = 12 are given by x1 2 Z, � (x2; x3; x4) =
(0; 1; 1) ; (0; 1;�1) ; (1;�1;�1) ; (1;�1; 1) except when c = 3; in which
case we have further solutions x1 2 Z, � (x2; x3; x4) = (5;�29; 11) ;
(5;�29;�11) ; (24; 29;�11) ; (24;�29;�11) : If c = 3, then all elements �
with � (�) = 1 are given by x1 2 Z, � (x2; x3; x4) = (�1; 1; 0) ; (0; 1; 0).

Theorem 3 For every integer C0 � 3 we can �nd e¤ectively computable con-
stants M0 (C0) and N0 (C0) such that if c � C0, then there are no primitive
integral elements � of the �eld (1) given by (2) with gcd (x2; x3; x4) = 1 and
with index of the form � (�) = 2a3b where a > M0 (C0) or b > N0 (C0) :

Directly from Theorem 2 and Theorem 3 we obtain:

Corollary 1 For a given parameter c; let � := � (c) denote a corresponding
primitive integral element of the �eld (1) given by (2) with gcd (x2; x3; x4) = 1.
Then the following holds:

i) Let a � 0 and b � 0 be arbitrary but �xed integers such that 2a3b > 12: If
there exist a parameter c and an element � (c) with an index � (� (c)) =
2a3b, then c � 2a3b � 2:

ii) Let c > 3 be arbitrary but �xed integer. If there exist an element � (c)
with index of the form � (� (c)) = 2a3b; then either � (� (c)) = 12 or
we can �nd e¤ectively computable constants M0 (c) and N0 (c) such that
c+ 2 � � (� (c)) � 2M0(c)3N0(c):

Remark 1 For the particular value of c there is an e¢ cient algorithm for de-
termining all elements with an index of the form 2a3b (see Section 4) based on
a more general algorithm given by I. Gaál and G. Nyul [12].

2 Preliminaries

Note that the �eld (1) is totally real bicyclic biquadratic �eld under the assump-
tion c, c � 2, c + 4 are positive square-free, pairwise relatively prime integers.
Since we use a method of I.Gaál, A. Peth½o and M.Pohst [7], we have to observe
the congruence behavior of c; c� 2; c+ 4 modulo 4. Hence, if c; c� 2; c+ 4 are
positive square-free integers, then c � 3 and c � 1 or 3 (mod 4) : Note that c;
c�2; c+4 are pairwise relatively prime integers if and only if c � 1 or 3(mod 6):
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Therefore, we observe cases when c � 3, c � 1; 3; 7; 9 (mod 12) and c; c � 2;
c+ 4 are square-free integers. Furthermore, in [11, Section 4] it was shown, by
using the result from [5], that there are in�nitely many integers c with the above
properties which again implies that there are in�nitely many totally real bicyclic
biquadratic �elds of the form (1). Also, in [11, Section 4], by using a method
of I.Gaál, A. Peth½o and M.Pohst [7], we showed that �nding all elements with
given index � is equivalent to �nding all solvable systems of the form

(c� 2)U2 � cV 2 = �F1 (3)

(c� 2)Z2 � (c+ 4)V 2 = �F2 (4)

cZ2 � (c+ 4)U2 = �4F3; (5)

where F1F2F3 = �: Then all integral elements � with index equal to � are given
by (2) where

U = 2x2 + x3; V = x4; Z = x3; (6)

and (U; V; Z) is passing through all solutions of all solvable systems of the form
(3), (4) and (5) with F1F2F3 = �: Furthermore, since the equations (3), (4) and
(5) are not independent, the relation

c (�F2)� (c+ 4) (�F1) = (c� 2) (�4F3) (7)

holds. Therefore, if we want to �nd all integral elements � of the form (2) with
gcd (x2; x3; x4) = 1 and with index � (�) = 2a3b; then we have to �nd all solvable
systems of the form (3), (4) and (5) with F1F2F3 = 2a3b and all solutions
(U; V; Z) of these systems which are a form of (6), where gcd (x2; x3; x4) = 1.
We note here that we have two di¤erent approaches to this problem, de-

pending on whether we have given an upper bound for the index � (�) (as in
Theorem 2), or an upper bound for the parameter c (as in Theorem 3). If we
have an upper bound for the index � (�) ; then we �rst consider the system
(3) and (5). Namely, we use the theory of continued fractions to determine all
possible small values of the right hand side of (3) and (5) so that the system
of these two equations has solutions. After that, from equation (7) by direct
testing, we �nd all possible triples (�F1;�F2;�F3) such that F1F2F3 is of the
form 2a3b: If we have an upper bound on the parameter c, then we �rst consider
the equation (7). Since, in our case Fi; i = 1; 2; 3 are of the form Fi = 2

�i3�i ,
we obtain a S-unit equation over Z. Because we have an upper bound C0 on
the parameter c, we are able to �nd upper bounds for the exponents a and b
using p�adic estimates and those upper bounds depend only on C0: Since our
estimates providing large upper bounds for the exponents, we can diminish the
upper bounds using reduction procedure. Unfortunately, reduction procedure
can be used only for particular values of the parameter c; so reduced upper
bounds can not be expressed as a function of C0:
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3 Additional condition: upper bound for the in-
dex

We recall that if we want to �nd all primitive integral elements � of the �eld
(1) with index � (�) = 2a3b, we have to �nd all solvable systems of the form
(3), (4) and (5), where F1F2F3 = 2a3b.
Suppose that (U; V; Z) is an integer solution of the system (3), (4) and (5),

where c � 3, c � 1; 3; 7; 9 (mod 12) and c; c � 2; c + 4 are square-free integers.
If one of the integers U; V; Z is equal to zero, then (3), (4) and (5) imply that
other two integers are not equal to zero. Further, if U = 0, then equation (3)
implies that c divides F1 which again implies c = 3 since F1 is of the form 2�3�

and c � 3 is an odd square-free positive integer. Similarly, we �nd if V = 0,
then equation (4) implies c = 3: Furthermore, we obtain that there is no c which
satis�es the equation (4) if Z = 0: Therefore, if c > 3, then it is su¢ cient to
observe only solutions (U; V; Z) in positive integers.
Let c � 3 and let � (�) � K; where K is a positive integer. Further, let

(U; V; Z) be a solution in positive integers of the system of Pellian equations (3)
and (5). Since � (�) = F1F2F3 � K; then F1 � K and F3 � K: Now, from (3)
and (5), we obtain�����

r
c

c� 2 �
U

V

����� =
����� c

c� 2 �
U2

V 2

����� �
�����
r

c

c� 2 +
U

V

�����
�1

<
F1

(c� 2)V 2 �
r
c� 2
c

� Kp
c (c� 2)V 2

(8)

and �����
r
c+ 4

c
� Z

U

����� =
�����c+ 4c � Z2

U2

����� �
�����
r
c+ 4

c
+
Z

U

�����
�1

<
4F3
cU2

�
r

c

c+ 4
� 4Kp

c (c+ 4)U2
: (9)

Note that for c > 3 is enough to assume K � 12; since in that case, by Theorem
1, minimal index is equal to 12.

3.1 Case c > 3

Let c > 3: Additionally, suppose 12 � K � c + 1: Note, that this condition
implies c � 11; and since we have c � 1; 3; 7; 9 (mod 12) ; then c � 13: Under
these conditions, from (8) and (9), we obtain that all solutions (U; V; Z) in
positive integers of the system of Pellian equations (3) and (5), satisfying����r c

c� 2 �
U

V

���� < Kp
c (c� 2)V 2

� c+ 1p
c (c� 2)V 2

<
2

V 2
(10)
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and �����
r
c+ 4

c
� Z

U

����� < 4Kp
c (c+ 4)U2

� 4 (c+ 1)p
c (c+ 4)U2

<
4

U2
: (11)

Similarly as in [11, Section 4.1], we will use theory of continued fractions to
determine all possible values of �F1 and �4F3 such that equations (3) and
(5) have solutions in relatively prime integers. Precisely, since the inequalities
(10) and (11) are satis�ed, we can apply Theorem (Worley [15], Dujella [3]) and
[4, Lemma 1] (see also [11, Theorem 3 and Lemma 1]).
We �nd that under above conditions, i.e. if F1 � c+ 1; where c � 13 and if

equation (3) has solutions in relatively prime integers U and V , then

�F1 2 S1 (c) = f�2;�c; c� 2g :

Since F1 is of the form F1 = 2�3� ; where � � 0; � � 0 are integers and since
c � 1; 3; 7; 9 (mod 12), then the only possibility is �F1 = �2.
Similarly, if F3 � c + 1; where c � 13 and equation (5) has solutions in

relatively prime integers U and Z, then

�4F 32 S3 (c)= f�4;�1; 4c; 4c� 9;�2c� 9; 2c� 1;�c� 4; 3c� 4;�3c� 16g ; if c > 19:

Additionally, we have

�4F3 2 S3 (c) [ S03 (c) if c = 19;

�4F3 2 S3 (c) [ S03 (c) [ S003 (c) if c = 15;

�4F3 2 S3 (c) [ S03 (c) [ S003 (c) [ S0003 (c) if c = 13;

where

S03 (c) = f16c� 225; 5c� 16g ;
S003 (c) = f12c� 121; 14c� 169; 15c� 196; 13c� 144g ;
S0003 (c) = f6c� 25; 8c� 49; 10c� 81; 7c� 36; 9c� 64; 11c� 100g :

Since F3 is of the form F3 = 2
3�, where 
 � 0; � � 0 are integers and since
c � 1; 3; 7; 9 (mod 12) ; then the only possibility is �4F3 = �4 for all c � 13:
Now, suppose that (U; V; Z) is a solution of the system of Pellian equations

(3) and (5) in positive integers. Let gcd (U; V ) = d and gcd (U;Z) = g: If
F1 = 2

�3� � c+ 1 and F3 = 2
3� � c+ 1; where c � 13; then �F1 = �2d2 and
�4F3 = �4g2 which implies

d �
r
c+ 1

2
<
c

2
and g �

p
c+ 1 <

c

2
:

Let U = dU1 = gU2, V = dV1 and Z = gZ2. Then gcd (U1; V1) = 1; gcd (U2; Z2) =
1 and following equations are hold

(c� 2)U21 � cV 21 = �2
cZ22 � (c+ 4)U22 = �4:
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By [11, Lemma 3], all such U1 are given recurrently in the following way

u0 = 1; u1 = 2c� 1; um+2 = (2c� 2)um+1 � um; m � 0; (12)

and all such U2 are given recurrently by

v0 = 1; v1 = c+ 1; vn+2 = (c+ 2) vn+1 � vn; n � 0: (13)

Since U = dU1 = gU2; then there exist nonnegative integers m and n such that
U = dum = gvn; where um and vn are de�ned by (12) and (13), respectively.
By [11, Lemma 4], for all m;n � 0; we have

um � (�1)m�1 (m(m+ 1)c� 1) (mod 4c2); vn �
n(n+ 1)

2
c+ 1(mod c2).

Therefore, if dum = gvn; then dum � gvn(mod c
2) which implies (�1)md �

g(mod c). Since 0 < d < c
2 and 0 < g <

c
2 , we have d = g; i.e. U1 = U2: Thus,

we obtain a system of simultaneous Pellian equations

(c� 2)U21 � cV 21 = �2;
cZ22 � (c+ 4)U21 = �4:

In [11, Theorem 4] we �nd that for c � 7 only solutions to this system are
(U1; V1; Z2) = (�1;�1;�1). Therefore, all solutions to the corresponding sys-
tem of Pellian equations (3) and (5) (with �F1 = �2d2, �4F3 = �4d2 and
d �

q
c+1
2 ) are of the form (U; V; Z) = (�d;�d;�d) : If gcd (x2; x3; x4) = 1,

then (6) implies gcd (U; V; Z) = 1 or 2. Therefore, we have d = 1 or 2:

i) If d = 1; then �F1 = �2; �4F3 = �4, and from (7) we obtain �F2 = �6;
which implies � (�) = F1F2F3 = 2�6�1 = 12: Therefore, � has the minimal
index, i.e. � (�) = � (Lc) = 12.

ii) If d = 2, then from (6), we obtain

x4 = �2; 2x2 + x3 = �2; x3 = �2;

which implies � (x2; x3; x4) = (0; 2; 2) ; (0; 2;�2) ; (2;�2;�2) ; (2;�2; 2), a
contradiction with gcd (x2; x3; x4) = 1:

When 3 < c < 11 (which implies c = 7); we take K = 12. Since, in this
case, the minimal index of the �eld Lc is equal to 12; then � (�) � 12 implies
� (�) = � (Lc) = 12:
For each c > 3; by Theorem 1, all elements � with minimal index � (�) =

� (Lc) = 12 are given by� (x2; x3; x4) = (0; 1; 1) ; (0; 1;�1) ; (1;�1;�1) ; (1;�1; 1) :
To complete the proof of Theorem 2 it remains to consider the case c = 3

and K = 12.
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3.2 Case c = 3 and K = 12

Let c = 3 and � (�) = F1F2F3 � K = 12: Let (U; V; Z) be a solution in positive
integers of the system (3) and (5) with c = 3: Since � (�) = F1F2F3 � 12; then
F1 � 12 and F3 � 12: Hence, from (8) and (9), we obtain�����p3� U

V

����� < F1p
3V 2

� 12p
3V 2

<
7

V 2
(14)

and �����
r
7

3
� Z

U

����� < 4F3
3U2

�
r
3

7
� 4 � 12p

21U2
<
11

U2
; (15)

respectively. If gcd (U; V ) = 1 and F1 � 12, then from (14) by Theorem (Worley
[15], Dujella [3]) and [4, Lemma 1], we obtain

�F1 2 S01 = f1;�2;�3; 6;�11g :

Knowing that, in our case, F1 is of the form F1 = 2
�3� ; then the only possibil-

ities are �F1 = 1;�2;�3; 6: Similarly, if gcd (U;Z) = 1 and F3 � 12 then from
(15) ; we obtain

�4F3 2 S3 = f�1; 3;�4; 5;�7; 12;�15; 17; 20; 21;�25;�28; 35;�37; 41;�43; 47g :

Since we have F3 = 2
3� � 12; then the only possibilities are �4F3 = �4; 12,
i.e. �F3 = �1; 3.
Additionally, for c = 3; equation (7) has form

3 (�F2)� 7 (�F1) = �4F3; (16)

and since F1F2F3 � 12; we obtain that there are only two possibilities:

i) (�F1;�F2;�F3) = (1; 1;�1) which implies � (�) = 1: Therefore, � (�) is
equal to minimal index � (L3) = 1: Now, by Theorem 1, all such � are
given by � (x2; x3; x4) = (�1; 1; 0) ; (0; 1; 0) :

ii) (�F1;�F2;�F3) = (�2;�6;�1) which implies � (�) = 12: The corre-
sponding system is

U2 � 3V 2 = �2 (17)

3Z2 � 7U2 = �4: (18)

Similarly as in [11, Section 4.2], we �nd that the only solutions to the system
(17) and (18) are (U; V; Z) = (�1;�1;�1) and (U; V; Z) = (�19;�11;�29) :
Since integers U; V; Z are of the form given in (6), where gcd (x2; x3; x4) = 1,
all � with index � (�) = 12 are given by � (x2; x3; x4) = (0; 1; 1), (0; 1;�1),
(1;�1;�1), (1;�1; 1), (5;�29; 11), (5;�29;�11), (24; 29;�11), (24;�29;�11) :
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Note that the above results we obtain by assuming (U; V; Z) is a solution
in positive integers to the system (3), (4) and (5) with c = 3. It remains to
observe the cases when (U; V; Z) is solution in nonnegative integers with U = 0
or V = 0:
If c = 3 and V = 0; then (3) and (4) imply U2 = �F1; Z2 = �F2;

where U 6= 0 and Z 6= 0: Therefore, we have F1F2 = U2Z2 � 12, which
implies (U; V; Z) = (1; 0; 1) ; (1; 0; 2) ; (1; 0; 3) ; (2; 0; 1) ; (3; 0; 1) : Since �F1 =
U2, �F2 = Z2 and F1F2F3 = 2a3b � 12, from equation (16), we obtain that the
only possibility is (�F1;�F2;�F3) = (1; 1;�1) and this triple we have already
obtained.
If U = 0; then (3) and (5) imply �3V 2 = �F1; 3Z2 = �4F3; where

V 6= 0 and Z 6= 0: Therefore, we have F1F3 = 9
4V

2Z2 � 12 and Z is an
even integer. This implies (U; V; Z) = (0; 1; 2) : Since �F1 = �3V 2 = �3,
�4F3 = 3Z2 = 12; from equation (16), we �nd �F2 = �3: Therefore, we obtain
a triple (�F1;�F2;�F3) = (�3;�3; 3) which does not satisfy the condition
F1F2F3 � 12: Therefore, we �nished the proof of Theorem 2.

4 Additional condition: upper bound for the pa-
rameter c

In this section we show that if have an upper bound on the parameter c, then
we can �nd an upper bound for the index: We will follow the method of I. Gaal
and G. Nyul given in [8]. We brie�y sketch the main steps of our procedure.
We start with equation (7). Since, in our case, unknowns Fi in (7); are of the
form Fi = 2�i3�i , i = 1; 2; 3; we obtain a S-unit equation over Z. In order
to �nd all elements � with index � (�) = F1F2F3 = 2a3b; we have to �nd all
primitive solution of equation (7) and all possibilities for common factor 2A3B

of F1; F2; F3 (see Section 4.1). To �nd all possibilities for the exponents in the
common factor 2A3B , we need to determine how rational primes 2 and 3 split
in three distinct quadratic sub�elds of the quartic �eld Lc: We show that the
exponents A and B attain only very small values (see Section 4.2). If have an
upper bound C0 on the parameter c, then we are able to �nd an upper bound for
the exponents in primitive solutions using p�adic linear form estimates and that
upper bound depends only on C0 (see Section 4.3): Since our estimates giving
large upper bounds for the exponents, we can diminish those upper bounds using
reduction procedure (see Section 4.4). Unfortunately, reduced upper bounds can
not be expressed as a function of C0 since reduction procedure can be used only
for particular value of the parameter c:

4.1 S-unit equation

Let � be a primitive integral element of the form (2) with gcd (x2; x3; x4) = 1
and let index of � be � (�) = 2a3b where a � 0 and b � 0 are arbitrary but
�xed integers. We have shown that � (�) is of the form � (�) = F1F2F3, where

9



F1; F2; F3 satisfy relation (7). Since � (�) = 2a3b implies

Fi = 2
�i3�i ; 0 � �i � a; 0 � �i � b; i = 1; 2; 3;

then (F1; F2; F3) is solution of the S-unit equation (7) over Z.
We will �nd all primitive solutions (f1; f2; f3) of (7) in positive integers (those

with gcd (f1; f2; f3) = 1): Then all solutions of (7) are of the form Fi = fi �2A3B ;
i = 1; 2; 3; where 2A3B = gcd (F1; F2; F3) = P: Set

fi = 2
di3ei ; i = 1; 2; 3:

Then equation c (�f2)� (c+ 4) (�f1) = (c� 2) (�4f3) can be rewritten in the
form

� (c+ 4) 2d13e1 � c2d23e2 = � (c� 2) 2d3+23e3 : (19)

Note that, since c � 3, c � 1; 3; 7; 9 (mod 12) and c; c � 2; c + 4 are square-
free integers, we have ord2 (c+ 4) = ord2 (c) = ord2 (c� 2) = ord3 (c+ 4) =
ord3 (c� 2) = 0 and ord3 (c) = k where c = 3kc1, 3k kc and k = 0 or 1. Now, if
the equation (19) we simplify with possible common factors 2 and 3; we obtain
equation

� (c+ 4) 2d
0
13e

0
1 � c12d

0
23e

0
2 = � (c� 2) 2d

0
33e

0
3 ; (20)

where at most one of the d01; d
0
2; d

0
3 and at most one of the e

0
1; e

0
2; e

0
2 is positive.

After determined d01; d
0
2; d

0
3; e

0
1; e

0
2; e

0
3, values of fi = 2di3ei ; i = 1; 2; 3; we can

obtain using the following:

� If (d01; d02; d03) = (d01; 0; 0), then (d1; d2; d3) = (d01 + 2; 2; 0) ;

� If (d01; d02; d03) = (0; d02; 0), then (d1; d2; d3) = (2; d02 + 2; 0) ;

� If (d01; d02; d03) = (0; 0; 1), then (d1; d2; d3) = (1; 1; 0) ;

� If (d01; d02; d03) = (0; 0; d03) ; d03 � 2, then (d1; d2; d3) = (0; 0; d03 � 2) ;

� If c � 1; 7 (mod 12), then (e1; e2; e3) = (e01; e02; e03) ;

� If c � 3; 9 (mod 12) and

� (e01; e
0
2; e

0
3) = (e

0
1; 0; 0) ; then (e1; e2; e3) = (e

0
1 + 1; 0; 1) ;

� (e01; e
0
2; e

0
3) = (0; 0; e

0
3), then (e1; e2; e3) = (1; 0; e

0
3 + 1) ;

� (e01; e
0
2; e

0
3) = (0; e

0
2; 0) ; e

0
2 � 1, then (0; e2; 0) = (0; e02 � 1; 0) :

It is easy to see that exponents in (20) cannot all be equal to zero. Fur-
thermore, if c > 3; than we have: if there exist i such that d0i 6= 0; then there
exist j such that e0j 6= 0; and vice versa. Also, i 6= j must hold: If c = 3;
then we have the following exceptions: (d01; d

0
2; d

0
3; e

0
1; e

0
2; e

0
3) = (0; 0; 3; 0; 0; 0) ;

(0; 3; 0; 0; 0; 0) ; (0; 0; 1; 0; 0; 1) ; (0; 1; 0; 0; 1; 0) : Therefore, from now on, we will
assume that exactly one d0i is positive and exactly one e

0
j is positive, where i 6= j:

10



4.2 gcd (F1; F2; F3) calculations

In order to �nd an upper bound for the exponents in P = gcd (F1; F2; F3) =
2A3B we will follow of a method of I.Gaal and G.Nyul [8, Section 6]. First,
we need to determine how rational primes 2 and 3 splits in three distinct
quadratic sub�elds of the quartic �eld Lc = Q (

p
m;
p
n) ; namely in the �elds

M1 = Q (
p
n) ; M2 = Q (

p
m), M3 = Q

�p
m1n1

�
, where m1 = c + 4; n1 = c;

m = (c+ 4) (c� 2) ; n = c (c� 2) : Using for example [1, p. 245], we �nd the fac-
torization of the principal ideals h2i and h3i into prime ideals of rings of integers
OMi , i = 1; 2; 3 as follows: In the ring OM1 ; we have

h2i =


2; 1 +

p
n
�2
= P21

h3i =


3;
p
n
�2
= P22 ; if c � 3; 9 (mod 12)

h3i = P3; if c � 1; 7 (mod 12) :
In the ring OM2 ; we obtain

h2i =


2; 1 +

p
m
�2
= P24 ;

h3i =


3; a+

p
m
� 

3; a�

p
m
�
= P5 �P5; where a2 � m(mod 3);

since x2 � m(mod 3) is solvable. In the ring OM3 ; we have

h2i = P6;
h3i = h3;pm1n1i2 = P27 ; if c � 3; 9 (mod 12) ;
h3i = P8; if c � 1; 7 (mod 12) :

Using primitive solutions fi, i = 1; 2; 3 of (7) we can rewrite system (3), (4) and
(5) as

(cV )
2 � nU2 = �s1P (21)

((c+ 4)V )
2 �mZ2 = �s2P (22)

(cZ)
2 �m1n1U

2 = �s3P (23)

with s1 = cf1, s2 = (c+ 4) f2; s3 = 4cf3 and P = 2A3B . Let (U; V; Z) arbitrary
but �xed solution of system (21), (22) and (23). Then, following [8, Section 6],
we set

i �i �i '1i '2i D1i D2i
1 c

p
n cV�

p
nU cV+

p
nU 0 3

2 c+ 4
p
m (c+ 4)V�

p
mZ (c+ 4)V+

p
mZ 1 3

3 c
p
m1n1 cZ�pm1n1U cZ+

p
m1n1U 0 2

and by [8, Lemma 3] we obtain the following:

� Ideal h2i = P6 is prime in the ring of integers OM3 of the �eld M3. Since

c � c+ 4 � 1 (mod 2), we have ordP6 (2c) = 1 and ordP6
�
2
p
c (c+ 4)

�
=

1, and by [8, Lemma 3, (ii)], we obtain

A � 2max
n
ordP6 (2c) ; ordP6

�
2
p
c (c+ 4)

�o
+D23 = 2�max f1; 1g+2 = 4;
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� Let c � 1; 7 (mod 12) : In this case ideal h3i = P3 is prime in the ring of
integers OM1 of the �eldM1: Since c � 1 (mod 3) and c (c� 2) � 2 (mod 3)
we obtain ordP3 (2c) = 0 and ordP3

�
2
p
c (c� 2)

�
= 0, and by [8, Lemma

3, (i)], we have

B � 2max
n
ordP3 (2c) ; ordP3

�
2
p
c (c� 2)

�o
+D11 = 0; i.e. B = 0;

� Let c � 3; 9 (mod 12) : In this case we have h3i =
D
3;
p
c (c� 2)

E2
= P22 in

the ring of integers OM1
of the �eldM1: Since we have 3 kc and 3 - (c� 2),

then ordP2 (2c) = 2 and ordP2
�
2
p
c (c� 2)

�
= 1, and by [8, Lemma 3,

(iii)], we obtain

B � max
n
ordP2 (2c) ; ordP2

�
2
p
c (c� 2)

�o
+D11 = max f2; 1g+ 0 = 2:

Hence, we obtain:

� If c � 1; 7 (mod 12) ; than gcd (F1; F2; F3) = 2A; where 0 � A � 4;

� If c � 3; 9 (mod 12) ; than gcd (F1; F2; F3) = 2A3B ; where 0 � A � 4 and
0 � B � 2.

4.3 Upper bound for the exponents

Let us denote �1 = c + 4; �2 = c � 2 and �3 = c1; where c1 = c if c � 1; 7
(mod 12) and c1 = c=3 if c � 3; 9 (mod 12) : Then ord2 (�l) = ord3 (�l) = 0 for
all l = 1; 2; 3: We assumed that in (20) exactly one d0i is positive, exactly one e

0
j

is positive and i 6= j. Therefore, let d0i 6= 0 and e0j 6= 0; where i 6= j: Then, from
(20), for distinct integers i; j; k 2 f1; 2; 3g ; we obtain

1 � d0i = ord2
�
��j3e

0
j � �k3e

0
k

�
= ord2

�
3e

0
j �

�
��k
�j

��
1 � e0j = ord3

�
��i2d

0
i � �k2d

0
k

�
= ord3

�
2d

0
i �

�
��k
�i

��
In all above cases we have expressions of the form

ordp

�
�b11 � �2

�
; (24)

where b1 is positive integer and �1; �2 2 Q. We will apply estimates of Y.
Bugeaud and M. Laurent [2, Corollaire 2] on (24).
Let us denote by h (�) the absolute logarithmic height of the algebraic num-

ber �; given by h (0) = 0 and by

h (�) =
1

d
log

�
jaj

dQ
l=1

max f1; j�ljg
�

12



if a (x� �1) ::: (x� �d) is the minimal polynomial of � 6= 0 over Z: We have
h (2) = log 2; h (3) = log 3; and

h

�
��k
�t

�
=
1

1
log

�
�t �

1Q
l=1

max

�
1;

������k�t
������ = log (max f�t; �kg) ,

where t = i or j: Therefore, if �k = �1 or �t = �1; then

h

�
��k
�t

�
= log (c+ 4) :

If �k�t =
c�2
c1

or c1
c�2 ; then

h

�
��k
�t

�
=

�
log (c� 2) ; if c � 3; 9 (mod 12) ;
log c1 = log c; if c � 1; 7 (mod 12) :

Using the notations from [2], we have K = Q
�
� �k
�t
; 2
�
= Q

�
� �k
�t
; 3
�
= Q;

f = 1 and D = [K:Q]
f = 1. Let A1 > 1 and A2 > 1 be real numbers such that

max

�
h (�i) ;

log p

D

�
� logAi; i = 1; 2:

In our case we have

max

�
h (�1) ;

log p

D

�
= log 3;

max

�
h (�2) ;

log p

D

�
= max flogmax f�k; �tg ; log pg � log (c+ 4) ;

so we can take logA1 = log 3 and logA2 = log (c+ 4) : Now, we have

b0 =
b1

D logA2
+

b2
D logA1

=
b1

log (c+ 4)
+

1

log 3
:

where b1 = d0i if p = 3 and b1 = e
0
j if p = 2: Hence, if c � 3; then [2, Corolllaire

2] implies

d0i �
48 log 3

(log 2)
4

�
max

�
log

�
e0j

log (c+ 4)
+

1

log 3

�
+ log log 2 + 0:4; 10

��2
log (c+ 4)

� 48 log 3

(log 2)
4

�
max

�
log

�
e0j
log 7

+
1

log 3

�
+ log log 2 + 0:4; 10

��2
log (c+ 4)

(25)

and

e0j �
36

(log 3)
3

�
max

�
log

�
d0i

log (c+ 4)
+

1

log 3

�
+ log log 3 + 0:4; 10 log 3

��2
log (c+ 4)

� 36

(log 3)
3

�
max

�
log

�
d0i
log 7

+
1

log 3

�
+ log log 3 + 0:4; 10 log 3

��2
log (c+ 4) :

(26)
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Let 3 � c � C0 and T (c) = max fd01; d02; d03; e01; e02; e03g = max
�
d0i; e

0
j

	
:

If T (c) = d0i; then from (25) we have

e0j � d0i �
(

22845 � log (C0 + 4) ; if e0j � 41448

228: 447
�
log
�

e0j
log 7 +

1
log 3

�
+ log log 2 + 0:4

�2
log (C0 + 4) ; if e0j � 41449:

(27)
If T (c) = e0j ; then from (26) we obtain

d0i � e0j �
(

3276:87 � log (C0 + 4) ; if d0i � 70107
27:16

�
log
�

d0i
log 7 +

1
log 3

�
+ log log 3 + 0:4

�2
log (C0 + 4) if d0i � 70108:

(28)
Therefore, if 3 � c � C0, then T (c) � T0 (C0) ; where T0 (C0) we can obtain
from inequalities (27) and (28). Note, for calculating T0 (C0) it is enough to
consider inequality

x � 228: 447 �
�
log

�
x

log 7
+

1

log 3

�
+ log log 2 + 0:4

�2
� log (C0 + 4) : (29)

Indeed, if inequality (29) implies x � K0; then T (c) � K0; so we take T0 (C0) =
K0: For example, if c � C0 = 100; then from inequality (29) we obtain T (c) �
T0 (100) = 132125: Similarly, we �nd T0

�
1010

�
= 899597 and T0 (3) = 45234:

Since estimates of Y. Bugeaud and M. Laurent [2, Corollaire 2] give a large
upper bound for the exponents in (20), we can diminish that upper bound using
[6, Lemma 4.1]. Note that (24) is easy to convert into expressions with p�adic
logarithms. Namely, by [13, Lemma II.9], we have d0i = 1 or

2 � d0i = ord2
�
3e

0
j �

�
��k
�j

��
= ord2

��
� �j
�k

�
� 3e

0
j � 1

�
= ord2

�
log2

�
� �j
�k

�
+ e0j log2 3

�
(30)

and

1 � e0j = ord2
�
2d

0
i �

�
��k
�i

��
= ord2

��
� �i
�k

�
� 2d

0
i � 1

�
= ord3

�
log3

�
� �i
�k

�
+ d0i log3 2

�
(31)

since
�
� �i
�k

�
� 3e

0
j is 2�adic unit in 
2 and

�
� �j
�k

�
� 2d0i is 3�adic unit in 
3

for all distinct integers i; j; k 2 f1; 2; 3g. By repeating the p�adic reduction
procedure given in [6, Lemma 4.1] for linear forms in p�adic logarithms from
(30) and (31) as long as the reduced bounds are less than the original one, for
each c, 3 � c � C0; we can obtain

d0i := d
0
i (c) �M

(i)
R (c) and e0j := e

0
j (c) � N

(j)
R (c) ;
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where M (i)
R (c) and N (j)

R (c) are the best possible bounds for d0i and e
0
j , respec-

tively. Denote

MR (C0) = max
i2f1;2;3g, c�C0

M
(i)
R (c) and NR (C0) = max

j2f1;2;3g, c�C0
N
(j)
R (c) ;

(where four exceptional cases for c = 3 given in Section 4.1 are also included).
Then

d0i �MR (C0) � T0 (C0) and e0i � NR (C0) � T0 (C0) ;
for all 3 � c � C0 and all i; j 2 f1; 2; 3g : The results from Section 4.1 now imply
that the values of d1; d2; d3; e1; e2; e2 are also bounded which again implies,
together with the results from Section 4.2, that values of the Fi = 2di+A3ei+B ;
i = 1; 2; 3 are bounded too. Precisely, we obtain

ord2 (F1F2F3) =

3X
i=1

di+3A � (MR (C0) + 4)+3 �4 =MR (C0)+16 =M0 (C0) ;

and

ord3 (F1F2F3) =
3X
j=1

ej + 3B

�
�

NR (C0) = N0 (C0) ; if c � 1; 7 (mod 12) ;
(NR (C0) + 2) + 3 � 2 = NR (C0) + 8 = N0 (C0) ; if c � 3; 9 (mod 12) :

Note that reduction procedure can be used only for particular values of the
parameter c, so, unfortunately, reduced upper bounds MR (C0) and NR (C0)
are not e¤ectively computable constants if C0 is too large. Therefore, if we put
e¤ectively computable constant T0 (C0) instead MR (C0) and NR (C0) in above
formulas for M0 (C0) and N0 (C0), we have proved Theorem 2.

4.4 The reduction procedure

Let 3 � c � C0. Suppose

T (c) = max fd01; d02; d03; e01; e02; e03g = max
�
d0i; e

0
j

	
� T0 (C0) :

where d0i 6= 0, e0j 6= 0 and i 6= j: We consider linear forms

�2 = log2

�
� �j
�k

�
+ e0j log2 3 and �3 = log3

�
� �i
�k

�
+ d0i log3 2; (32)

where i; j; k are distinct integers from the set f1; 2; 3g and �1 = c+4; �2 = c�2,
�3 = c1: We can diminish the upper bound T0 (C0) applying [6, Lemma 4.1] on
linear forms in (32). Using the notations from [6, Lemma 4.1] we have n = 2;
p = 2 or 3;

X = max fjx1j ; jx2jg = max
�
1; e0j

	
= e0j � T (c) � T0 (C0) = X0 if p = 2;

X = max fjx1j ; jx2jg = max
�
1; d0j

	
= d0i � T (c) � T0 (C0) = X0 if p = 3;
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#1 = log2

�
� �j
�k

�
; #2 = log2 3 if p = 2;

#1 = log3

�
� �i
�k

�
; #2 = log3 2 if p = 3:

Then we have

ord2 (�2) = d
0
i � e0j = 0 + 1 � e0j if T (c) = d0i;

ord3 (�3) = e
0
j � d0i = 0 + 1 � d0i if T (c) = e0j :

Therefore, constants c1 and c2 from the [6, Lemma 4.1] are given by (c1; c2) =
(0; 1) : Since

ord2

�
log2

�
� �j
�k

��
� ord2 (log2 3) = 2;

ord3

�
log3

�
� �i
�k

��
� ord3 (log3 2) = 1;

for all distinct integers i; j; k from the set f1; 2; 3g (see below), then, following
[6, Lemma 4.1], we de�ne

�02 =
�2
log2 3

= �

0@� log2
�
� �j
�k

�
log2 3

1A+ e0j = � (#j;k) + e0j , if e0j � 1 and p = 2;
(33)

�03 =
�3
log3 2

= �

0@� log3
�
� �i
�k

�
log3 2

1A+ d0i = � (#i;k) + d0i; if d0i � 2 and p = 3:
(34)

For 0 < �p 2 Z and #t;k 2 
p let #
(�p)
t;k be a unique rational integer with

ord2(#t;k � #(�p)t;k ) � �p and 0 � #
(�p)
t;k � p�p � 1; where t = j if p = 2 and t = i

if p = 3. Denote by ��p the lattice spanned by the columns of the matrix"
1 0

#
(�p)
t;k p�p

#
:

Let

N
(j)
0 (c) =

�2 � 1 + ord2 (log2 3)� 0
1

= �2 + 1

and

M
(i)
0 (c) =

�3 � 1 + ord3 (log3 2)� 0
1

= �3:

Denote by b(p)1 the �rst vector of the LLL�reduced basis of ��p . If


b(p)1 


 > 2n�12 p2 � T0 (C0) = 2 � T0 (C0) ;
then, by [6, Lemma 4.1] we have:
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- If T (c) = d0i there is no e
0
j with N

(j)
0 (c) � e0j � T0 (C0) :

- If T (c) = e0j there is no d
0
i with M

(i)
0 (c) � d0i � T0 (C0) :

Using these new bounds, the reduction can be repeated, as long as the new
bound for e0j or d

0
i is less than the previous one. Finally, we obtain:

- If T (c) = d0i; then 1 � e0j � N
(j)
R (c) ; where N (j)

R (c) is the best possible
bound for e0j and all possible values for

�
d0i; e

0
j

�
we obtain from equation

2d
0
i = � �j3

e0j��k
�i

; where 1 � e0j � N
(j)
R (c) and d0i � e0j :

- Similarly, if T (c) = e0j , then 1 � d0i �M
(i)
R (c) ; where M (i)

R (c) is the best
possible bound for d0i and all possible values for

�
d0i; e

0
j

�
, we obtain from

equation 3e
0
j = � �i2

d0i��k
�j

; with 1 � d0i �M
(i)
R (c) and e0j � d0i.

In order to �nd all possible elements with an index of the form 2a3b for given
c, 3 � c � C0; we have to perform above reduction procedure for each of six
possible couples

�
d0i; e

0
j

�
; where i 6= j. Having determined all possible sextuples

(d01; d
0
2; d

0
3; e

0
1; e

0
2; e

0
3), we have to �nd all possible sextuples (d1; d2; d3; e1; e2; e3)

(a connection between them is given in Section 4.1) which give us all possi-
ble primitive triples (f1; f2; f3), where fi = 2di3ei ; i = 1; 2; 3: After that,
all solutions of equation (7) which are of the form (�f1;�f2;�f3), we ob-
tain using direct testing. Now all required triples (�F1;�F2;�F3) are of the
form �Fi = �fi2A3B , i = 1; 2; 3; where 0 � A � 4 and B = 0 if c �
1; 7 (mod 12) or 0 � B � 2 if c � 3; 9 (mod 12) : For each explicit value of
the triple (�F1;�F2;�F3) we have to solve a corresponding system (3), (4) and
(5). Every solution (U; V; Z) of that system which is of the form (6), where
gcd (x2; x3; x4) = 1, determines an integral element � of the form (2) with
index � (�) = F1F2F3. For 3 � c � C0; we can give solutions in the form
(c; � (�) ; �) =

�
c; 2a3b; x2; x3; x4

�
:

Computing ordp
�
logp

�
� �t
�k

��
and #(�p)t;k

From a de�nition of p�adic logarithm follows that, in our case, it is enough to
�nd

logp
�t
�k
= logp

c� 2
c+ 4

; logp
c� 2
c1

and logp
c1
c+ 4

for p = 2 and p = 3 since

logp
�k
�t
= � logp

�t
�k

and logp

�
� �t
�k

�
= logp

�t
�k
:

Also, we have ordp
�
logp

�t
�k

�
= ordp

�
� logp �t

�k

�
:
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Using presentation of the p�adic logarithm as Taylor series, �rst we �nd

log2 3 =
1

2
log2

�
1�

�
�23

��
=

1P
n=0

(�1)n 2
3n+2

n+ 1
;

log3 2 =
1

2
log3 (1� (�3)) =

1P
n=0

(�1)n 3n+1

2 (n+ 1)
;

which implies ord2 (log2 3) = 2 and ord3 (log3 2) = 1, respectively.
Similarly, we �nd all logp

�t
�k
for p = 2 and p = 3 from which it follows that

ord2

�
log2

�
� �t
�k

��
� ord2 (log2 3) = 2;

ord3

�
log3

�
� �t
�k

��
� ord3 (log3 2) = 1:

for all �t�k =
c�2
c+4 ,

c�2
c1
, c1
c+4 : Therefore, since we follow [6, Lemma 4.1], the p�adic

integers #j;k and #i;k in (33) and (34) have to be de�ned as: #j;k = �
log2

�
� �j
�k

�
log2 3

if p = 2 and #i;k = �
log3

�
� �i
�k

�
log3 2

if p = 3:
Additionally, using the presentation of the p�adic logarithm as Taylor series,

each � := #t;k we can rewrite in the form

� =

�
1P
n=0

an

1P
n=0

bn

=
�1
�2
;

where ordp (�1) � 0 and ordp (�2) = 0: Then, for every 0 < � 2 Z; we can
�nd su¢ ciently large integers n1 and n2 such that �01 = �

n1P
n=0

an and �02 =

n2P
n=0

bn satisfy �(�) � �01
�02
(mod p�) ; where �(�) is a unique rational integer with

ordp(�� �(�)) � � and 0 � �(�) � p� � 1: We obtain the following

�(�) �
� log2 �t

�n

log2 3
(mod 2�) �

�
n1P
n=0

an

n2P
n=0

(�1)n 23n

n+1

(mod 2�) ;

where n2 =
�
��1
2

�
and

�(�) �
� log3 �t

�n

log3 2
(mod 3�) �

�
n1P
n=0

an

n2P
n=0

(�1)n 3n

2(n+1)

(mod 3�) ;
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where n2 = 2� � 3 if � � 3, and n2 = 2 if � = 1; 2. The values of �
n1P
n=0

an are

given in the following two tables:

1) Case c � 1; 7 (mod 12) : Note, in this case we have c1 = c:

�(�) � � (mod p�) 0 � l � �� 1 n1 = n
(l)
1 �01 = �

n1P
n=0

an

� log2
�
c�2
c1

�
log2 3

(mod 2�) ord2
�
c�1
2

� j
��l�1
l+2

k
�

n1P
n=0

�23k( c�12 )
n+1

(n+1)c2k+2

� log2( c�2c+4 )
log2 3

(mod 2�) ord2
�
c+1
2

� j
��l�1
l+2

k
�

n1P
n=0

23k3n+1( c+12 )
n+1

(n+1)(c+4)2k+2

� log2(
c1
c+4 )

log2 3
(mod 2�) - �� 1 �

n1P
n=0

� 22k

(n+1)(c+4)n+1

� log3
�
c�2
c1

�
log3 2

(mod 3�) ord3
�
c�1
3

� j
��l�1

l

k
; if l > 0

2�� 3; if l = 0; � � 3
2; if l = 0, � = 1; 2

�
n1P
n=0

� 22k+13n( c�13 )
n+1

(n+1)c2k+2

� log3( c�2c+4 )
log3 2

(mod 3�) -
2�� 3; if � � 3
2; if � = 1; 2

�
n1P
n=0

� 2n+13n

(n+1)(c+4)n+1

� log3(
c1
c+4 )

log3 2
(mod 3�) ord3

�
c+2
3

� j
��l�1

l

k
; if l > 0

2�� 3; if l = 0; � � 3
2; if l = 0, � = 1; 2

�
n1P
n=0

� 23k+33n( c+23 )
n+1

(n+1)(c+4)2k+2

2) Case c � 3; 9 (mod 12) : Note, in this case we have c1 = c
3 :

�(�) � � (mod p�) 0 � l � �� 1 n1 = n
(l)
1 �01 = �

n1P
n=0

an

� log2
�
c�2
c1

�
log2 3

(mod 2�) ord2
�
c�3
2

� j
��l�1
l+1

k
�

n1P
n=0

(�1)n 22k( c�32 )
n+1

(n+1)cn+1

� log2( c�2c+4 )
log2 3

(mod 2�) ord2
�
c+1
2

� j
��l�1
l+2

k
�

n1P
n=0

� 23k3n+1( c+12 )
n+1

(n+1)(c+4)2k+2

� log2(
c1
c+4 )

log2 3
(mod 2�) ord2

�
c+3
2

� j
��l�3
l+4

k
�

1P
n=0

24k+2(c+6)n+1( c+32 )
n+1

32k+2(n+1)(c+4)2k+2

� log3
�
c�2
c1

�
log3 2

(mod 3�) ord3
�
c�3
3

� j
��l�1

l

k
; if l > 0

2�� 3; if l = 0; � � 3
2; if l = 0, � = 1; 2

�
n1P
n=0

(�1)n 2n+13n( c�33 )
n+1

(n+1)cn+1

� log3( c�2c+4 )
log3 2

(mod 3�) -
2�� 3; if � � 3
2; if � = 1; 2

�
n1P
n=0

� 2n+13n

(n+1)(c+4)n+1

� log3(
c1
c+4 )

log3 2
(mod 3�) ord3

�
(c+3)(c+6)

9

� j
��l
l�1

k
; if l� 2

2�� 3; if l = 1; � � 3
2; if l = 1, � = 1; 2

�
n1P
n=0

(�1)n 23k+2( (c+3)(c+6)9 )
n+1

3(n+1)(c+4)2k+2

If l > �� 1; then �(�) � � (mod p�) � 0:
Taking the appropriate values of �01 given in the tables above, we can calculate
the values of #(�p)t;k at each step of the reduction procedure.
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