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Abstract
In this paper we give some results about primitive integral elements «
in the family of bicyclic biquadratic fields L. = Q (\/(c —2)c,\/(c+4) c)

which have index of the form g (a) = 2°3® and coprime coordinates in
given integral bases. Precisely, we show that if ¢ > 11 and « is an element
with index u (o) = 2°3° < ¢+ 1, then a is an element with minimal index
u(a) = u(Le) = 12. We also show that for every integer Cp > 3 we can
find effectively computable constants Mo (Co) and No (Co) such that if
¢ < Cp, than there are no elements o with index of the form p (a) = 2%3°,
where a > M (Cp) or b > N (Ch) .

1 Introduction

Let a be a primitive integral element of an algebraic number field K of degree
n with ring of integers Ok. Then index of « is defined as index of subgroup
Z[a]" in group O

u(@) = (0f : zlal"),

where (’);g and Z [oz]Jr denote the additive groups of corresponding rings. The
minimal index p (K) of the field K we define as the minimum of the indices
of all primitive integers in the field K. The field index m (K) is the greatest
common divisor of indices also taken for all primitive integers of K.

Let {1,ws,...,w,} be an arbitrary integral basis of K. Then discriminant of
corresponding linear form L (X) = X + waXs + ... + wp X, can be rewritten as

Drcjo (L (X)) = (I (Xa,..., X,))* Dk,

where Dy is discriminant of the field K and I (Xa,...,X,,) is a homogeneous
polynomial in n — 1 variables of degree n (n — 1) /2 with rational integer coeffi-
cients. The polynomial I (Xa,..., X,,) is called the index form associated to the
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integral basis {1, ws, ..., w, }. If the primitive integral element « is represented in
that integral basis as a = 1 +xows + ... + Tpwy, T1, Ta, ...T, € Z, then the index
of a is just p () = |I (22, ..., 2,)| . Hence, the problem of determining elements
of given index p € N can be reduced to the solving index form equations

I(z9y...;xy) = tpin a9, ..., z, € Z.

Bicyclic biquadratic fields are quartic fields of the type Q (v/m, \/n), where m,n
are distinct square-free rational integers. These fields were considered several
authors. M. N. Gras, and F. Tanoe [9] have found necessary and sufficient con-
ditions for biquadratic fields being monogenic. I. Gadl, A.Pethé and M. Pohst
[7] gave an algorithm for determining the minimal index and all elements with
minimal index in the totally real case using the integral basis described by
K.S. Williams [I4]. G.Nyul [12] classified all monogene totally complex bi-
quadratic fields and gave explicitly all generators of power integral bases in
them. In [I0] and [II] the author has determined the minimal index and all
elements with minimal index for three infinite families of totally real bicyclic
biquadratic fields. Further, I. Gadl and G.Nyul [§] provided an efficient algo-
rithm for determining elements of index divisible by fixed primes in biquadratic
number fields.
In [I1] the author proved following theorem.

Theorem 1 Let ¢ > 3 be an integer such that c =1 or 3 (mod6) and ¢, ¢ — 2,
c+ 4 are square-free integers. Then

Lo=Q(Vele—2),Vele+1)) (1)

18 a totally real bicyclic biquadratic field and

i) its field index is m (L.) = 1 for all ¢;
ii) the minimal index of L. is p(Le) =12 if ¢ > 7 and pu(Le) =1 if ¢ = 3;

iii) all integral elements with minimal index are given by

-2 4 -2 1 4
z1tw2v/ (€ —2) (¢ + 4)+w3 vie )(C+2) *yle )c+934 * CQ(C+ ),
()
where x1 € Z, (x2,23,24) = £(0,1,1),+£(0,1,-1),+(1,-1,-1),£(1,—-1,1)
if ¢ > 7 and (v2,x3,24) = £(—1,1,0),£(0,1,0) if ¢ = 3.

Since the minimal index of the field (1)) is of the form 23%, we wonder if
there exist primitive integral elements « with the index p («) of this form except
those with the minimal index. It suffices to observe elements « of the form
with ged (29, x3,24) = 1 since the index form I (x9,x3,x4) is a homogeneous
polynomial of degree 6. For a (partial) answer on this question we need some
additional conditions: an upper bound for the index p («) or an upper bound
for the parameter c.

The main results of the present paper are given in the following theorems:



Theorem 2 Let ¢ > 3 be an integer such that ¢ =1 or 3 (mod6) and ¢, ¢ — 2,
c+4 are square-free integers. If « is a primitive integral element of the field
given by (@, where x1, T, T3, x4 € Z with ged (xe, x3,24) = 1 and index of «
is of the form p () = 293%, where a > 0,b > 0 are integers, then the following
holds:

i) If c > 11 and p (o) < c+ 1, then p(a) = 12. Furthermore, if ¢ < 11 and
w(a) <12, then p(a) =12 if c#£ 3 and p(a) =1 or p(a) =12 if ¢ = 3.

i) All elements a with p(a) = 12 are given by x1 € Z, + (x9,x3,14) =
(0,1,1), (0,1,-1), (1,—-1,-1), (1,—1,1) except when ¢ = 3, in which
case we have further solutions x1 € Z, +(x9,x3,24) = (5,—29,11),
(5,—29,—11), (24,29, —11), (24,—-29,—11) . If ¢ = 3, then all elements «
with u () =1 are given by x1 € Z, + (z2,23,24) = (—1,1,0), (0,1,0).

Theorem 3 For every integer Cy > 3 we can find effectively computable con-
stants Mo (Co) and No (Cy) such that if ¢ < Cy, then there are no primitive
integral elements a of the field given by (@ with ged (xa,23,24) = 1 and
with index of the form u (o) = 293" where a > My (Cp) or b > Ny (Cp) .

Directly from Theorem [2] and Theorem [3| we obtain:

Corollary 1 For a given parameter c, let a := «(c) denote a corresponding
primitive integral element of the field given by (@ with ged (z2, x3,24) = 1.
Then the following holds:

i) Let a >0 and b > 0 be arbitrary but fized integers such that 2°3° > 12. If
there exist a parameter ¢ and an element a (c) with an index p(a(c)) =
203% then ¢ < 293b — 2.

%) Let ¢ > 3 be arbitrary but fized integer. If there exist an element o (c)
with index of the form p(a(c)) = 223° then either p(a(c)) = 12 or
we can find effectively computable constants My (c¢) and No (c) such that
c+2 < p(a(e) < 2Mole)gNole),

Remark 1 For the particular value of ¢ there is an efficient algorithm for de-
termining all elements with an index of the form 2°3% (see Section based on
a more general algorithm given by I. Gadl and G. Nyul [12].

2 Preliminaries

Note that the field is totally real bicyclic biquadratic field under the assump-
tion ¢, ¢ — 2, ¢ + 4 are positive square-free, pairwise relatively prime integers.
Since we use a method of I. Gadl, A. Pethé and M. Pohst [7], we have to observe
the congruence behavior of ¢, ¢ — 2, ¢ 4+ 4 modulo 4. Hence, if ¢,c — 2, ¢+ 4 are
positive square-free integers, then ¢ > 3 and ¢ = 1 or 3 (mod4). Note that ¢,
c¢—2, c+4 are pairwise relatively prime integers if and only if ¢ = 1 or 3(mod 6).



Therefore, we observe cases when ¢ > 3, ¢ = 1,3,7,9 (mod 12) and ¢, ¢ — 2,
¢+ 4 are square-free integers. Furthermore, in [I1] Section 4] it was shown, by
using the result from [5], that there are infinitely many integers ¢ with the above
properties which again implies that there are infinitely many totally real bicyclic
biquadratic fields of the form . Also, in [T}, Section 4], by using a method
of I. Gadl, A.Pethd and M. Pohst [7], we showed that finding all elements with
given index p is equivalent to finding all solvable systems of the form

(c—2)U* —cV? =+F (3)
(c=2)Z% = (c+4)V? =+F, (4)
cZ? — (c+4)U? = +4F3, (5)

where Fy F5F3 = p. Then all integral elements o with index equal to p are given

by where
U=2xy+2x3, V=r4 Z=uzx3, (6)

and U V., Z) is passing through all solutions of all solvable systems of the form
[4) and () with F; F>F3 = p. Furthermore, since the equations (3, ([) and
) are not independent, the relation

c(£F) — (c+4) (£F)) = (c — 2) (£4F) (7)

holds. Therefore, if we want to find all integral elements « of the form with
ged (w9, 23, 74) = 1 and with index p () = 223°, then we have to find all solvable
systems of the form , and (5) with FyFyF3 = 293 and all solutions
(U,V, Z) of these systems which are a form of @, where ged (22, x3,24) = 1.

We note here that we have two different approaches to this problem, de-
pending on whether we have given an upper bound for the index u(«) (as in
Theorem , or an upper bound for the parameter ¢ (as in Theorem . If we
have an upper bound for the index (), then we first consider the system
and . Namely, we use the theory of continued fractions to determine all
possible small values of the right hand side of and so that the system
of these two equations has solutions. After that, from equation by direct
testing, we find all possible triples (+Fy, +F5, +F3) such that F} F»F3 is of the
form 23%. If we have an upper bound on the parameter ¢, then we first consider
the equation . Since, in our case Fj, i = 1,2, 3 are of the form F; = 235,
we obtain a S-unit equation over Z. Because we have an upper bound Cj on
the parameter ¢, we are able to find upper bounds for the exponents a and b
using p—adic estimates and those upper bounds depend only on Cj. Since our
estimates providing large upper bounds for the exponents, we can diminish the
upper bounds using reduction procedure. Unfortunately, reduction procedure
can be used only for particular values of the parameter ¢, so reduced upper
bounds can not be expressed as a function of Cj.



3 Additional condition: upper bound for the in-
dex

We recall that if we want to find all primitive integral elements a of the field
(1) with index p(a) = 293°, we have to find all solvable systems of the form
B, [@) and (5), where Fy FyF3 = 2930,

Suppose that (U, V, Z) is an integer solution of the system , and ,
where ¢ > 3, ¢ =1,3,7,9 (mod 12) and ¢, ¢ — 2, ¢ + 4 are square-free integers.
If one of the integers U, V, Z is equal to zero, then , and imply that
other two integers are not equal to zero. Further, if U = 0, then equation
implies that ¢ divides F} which again implies ¢ = 3 since F} is of the form 2%3°
and ¢ > 3 is an odd square-free positive integer. Similarly, we find if V = 0,
then equation implies ¢ = 3. Furthermore, we obtain that there is no ¢ which
satisfies the equation if Z = 0. Therefore, if ¢ > 3, then it is sufficient to
observe only solutions (U, V, Z) in positive integers.

Let ¢ > 3 and let pu(a) < K, where K is a positive integer. Further, let
(U, V, Z) be a solution in positive integers of the system of Pellian equations (3))
and . Since p (o) = F1F»F3 < K, then F; < K and F3 < K. Now, from

&)

and (b)), we obtain
-1
e _Ul_j e |\ [e U
c—2 V| |ec—2 V2 -2V

< F1 C—2< K (8)
(c—2)V2 ¢ T \ele—-2)V2
and
—1
e+d Z c+4_£2 /c+4+£
c Ul | ¢ U2 c U
4F;5 c 4K

< =3 < . 9

CU2 c+4 — /C(C+4)U2 ( )
Note that for ¢ > 3 is enough to assume K > 12, since in that case, by Theorem
minimal index is equal to 12.

3.1 Casec>3

Let ¢ > 3. Additionally, suppose 12 < K < ¢+ 1. Note, that this condition
implies ¢ > 11, and since we have ¢ = 1,3,7,9 (mod 12), then ¢ > 13. Under
these conditions, from and @, we obtain that all solutions (U,V,Z) in
positive integers of the system of Pellian equations and , satisfying

Vo vt e e 0
c—2 V C(C_Q)V2— c(c—2)V2 V2



and

cti z 4K A+l 4 a1
c U <\/c(c+4)U2_\/c(c+4)U2<U2. )

Similarly as in [IT, Section 4.1], we will use theory of continued fractions to
determine all possible values of +F; and +4F3 such that equations and
(5) have solutions in relatively prime integers. Precisely, since the inequalities
(10) and are satisfied, we can apply Theorem (Worley [15], Dujella [3]) and
[4, Lemma 1] (see also [I1, Theorem 3 and Lemma 1]).

We find that under above conditions, i.e. if F} < ¢+ 1, where ¢ > 13 and if
equation has solutions in relatively prime integers U and V', then

+F €851 (c) ={-2,—¢c,c—2}.

Since F} is of the form F; = 20‘3ﬁ7 where a > 0,8 > 0 are integers and since
c¢=1,3,7,9 (mod 12), then the only possibility is +F; = —2.

Similarly, if F5 < ¢+ 1, where ¢ > 13 and equation has solutions in
relatively prime integers U and Z, then

+4F3€ S3(¢)={—4,—-1,4¢,4¢ — 9,—2c — 9,2¢c — 1,—c — 4,3¢ — 4,—3c — 16}, if ¢ > 19.
Additionally, we have

+4F3 € S5(c) U S5 (c) if c=19,
+4F5 € S3(c) U S, (e) U SY (¢) if ¢ = 15,
+4F5 € S5(c) U S5 (c)USY () USY (¢) if ¢ =13,

where

S5 (¢) = {16¢ — 225,5¢ — 16},
S (c) = {12¢ — 121, 14c — 169, 15¢ — 196, 13¢ — 144} ,
S (c) = {6¢ — 25,8¢ — 49, 10¢ — 81, 7c — 36,9¢ — 64, 11c — 100} .

Since Fj is of the form F3 = 273% where v > 0,0 > 0 are integers and since
¢=1,3,7,9(mod 12), then the only possibility is £4F3 = —4 for all ¢ > 13.

Now, suppose that (U, V, Z) is a solution of the system of Pellian equations
and in positive integers. Let ged (U, V) = d and ged (U, Z) = g. If
Fi =293 <c+4+1land F3 =273 <c+ 1, where ¢ > 13, then +F; = —2d? and
+4Fy = —4¢> which implies

c+1
d<
- 2
Let U = dU; = gUy, V = dVj and Z = gZ5. Then ged (U, V1) = 1, ged (Us, Zo) =
1 and following equations are hold

<g and g§\/0+1<§.

(c=2)UE —cVE=—2
cZ3 —(c+4) Ui = —4.



By [11, Lemma 3], all such U; are given recurrently in the following way
up =1, w3 =2c—1, Upy2=(2¢—2)Upt1 — Uy, m>0, (12)
and all such U; are given recurrently by
vo=1 wvi=c+1l, vpa=(c+2)vpr1 —v,, n>0. (13)

Since U = dU; = gU,, then there exist nonnegative integers m and n such that
U = du,, = gv,, where u,, and v, are defined by and , respectively.
By [11, Lemma 4], for all m,n > 0, we have

1
Um = (=)™ (m(m + 1)c — 1) (mod 4¢?), v, = %c + 1(mod ¢?).
Therefore, if du,, = gv,, then du,, = gv,(modc?) which implies (—1)"d =
g(modc). Since 0 <d < § and 0 < g < §, we have d = g, i.e. U; = Us. Thus,

we obtain a system of simultaneous Pellian equations

(c—2)U} — VP = -2,
cZ2 —(c+4) U} = —4.

In [II, Theorem 4] we find that for ¢ > 7 only solutions to this system are
(U1, V1, Z3) = (£1,41,+£1). Therefore, all solutions to the corresponding sys-
tem of Pellian equations (3) and (5) (with £Fy = —2d?, +4F; = —4d* and
d < “5—1) are of the form (U,V,Z) = (xd,+d, £d). If ged (zo,x3,24) = 1,
then implies ged (U, V, Z) = 1 or 2. Therefore, we have d = 1 or 2.

i) If d =1, then £F; = —2, £4F3 = —4, and from we obtain +F» = —6,
which implies p () = F1 F5F5 = 2-6-1 = 12. Therefore, o has the minimal
index, i.e. p(a) = pu(Le) = 12.

ii) If d = 2, then from @, we obtain
T4 = i2, 2582 +x3 = i27 T3 = i27

which lmphes == (an z3, £64) = (03 23 2) ) (0, 27 _2) ’ (23 _27 _2) ’ (23 _27 2)7 a
contradiction with ged (22, 23, 24) = 1.

When 3 < ¢ < 11 (which implies ¢ = 7), we take K = 12. Since, in this
case, the minimal index of the field L. is equal to 12, then p(a) < 12 implies
pla) =p(Le) =12.

For each ¢ > 3, by Theorem [1] all elements o with minimal index p (o) =
p(Le) = 12 are given by + (x2,z3,24) = (0,1,1), (0,1,-1),(1,-1,-1), (1, -1,1).
To complete the proof of Theorem [2] it remains to consider the case ¢ = 3

and K = 12.



3.2 Casec=3and K =12

Let c =3 and p () = F1FoF3 < K = 12. Let (U, V, Z) be a solution in positive
integers of the system and with ¢ = 3. Since u () = F1 F»F3 < 12, then
Fy <12 and F3 < 12. Hence, from (8) and (@), we obtain

F 12 7
- = — 14
‘f \/»Vz = fV2 V2 ( )
and
3 4-12 11
o< —2 <« = 1
‘\[ 3U2 77 V2102 NEER (15)

respectively. If ged (U, V) = 1 and F; < 12, then from ([14)) by Theorem (Worley
[15], Dujella [3]) and [4, Lemma 1], we obtain

+F €8 ={1,-2,-3,6,—11}.

Knowing that, in our case, Fj is of the form Fy = 2%3°, then the only possibil-
ities are £F; = 1,—2, —3,6. Similarly, if gcd (U, Z) = 1 and F3 < 12 then from
(I3 , we obtain

+4Fy € Sy = {—1,3,—4,5,-7,12, —15,17,20,21, —25, —28, 35, —37, 41, —43,47} .

Since we have F3 = 273% < 12, then the only possibilities are +4F3 = —4,12,
ie. £F5 = —1,3.
Additionally, for ¢ = 3, equation (7)) has form

3(+Fy) — 7(xFy) = +4F5, (16)
and since F} F5F35 < 12, we obtain that there are only two possibilities:

i) (£Fy,£F2,£F3) = (1,1, —1) which implies p (o)) = 1. Therefore, p () is
equal to minimal index p(L3) = 1. Now, by Theorem [1} all such « are
given by + (an z3, .’£4) = (_]—, 1, 0) ’ (Oa ]-7 0) :

ii) (£F1,+F,+F3) = (—2,—6,—1) which implies p(a) = 12. The corre-
sponding system is

U? -3V2 =2 (17)
37 —TU% = —4. (18)

Similarly as in [I1], Section 4.2], we find that the only solutions to the system
@@ and @8) are (U,V,Z) = (£1,+1,£1) and (U,V,Z) = (£19, +11,£29).
Since integers U, V, Z are of the form given in (], where ged (z2, x3,z4) = 1,
all @ with index p(a) = 12 are given by =+ (z2,23,24) = (0,1,1), (0,1, —1),
(1,-1,-1), (1,-1,1), (5,—29,11), (5,—29, —11), (24,29, —11), (24, —29, —11).



Note that the above results we obtain by assuming (U,V, Z) is a solution
in positive integers to the system , and with ¢ = 3. It remains to
observe the cases when (U, V, Z) is solution in nonnegative integers with U = 0
or V =0.

If c = 3 and V = 0, then and imply U? = +F, Z? = +F,,
where U # 0 and Z # 0. Therefore, we have F1F, = U?Z? < 12, which
implies (U,V, Z) = (1,0,1), (1,0,2), (1,0,3), (2,0,1), (3,0,1). Since +F, =
U2, +F, = Z? and Fy FoF5 = 2°3Y < 12, from equation , we obtain that the
only possibility is (+Fy, £F5, +F3) = (1,1, —1) and this triple we have already
obtained.

If U = 0, then and imply —3V2 = +F,, 372 = +4F;, where
V # 0 and Z # 0. Therefore, we have F}F3 = %‘/222 < 12 and Z is an
even integer. This implies (U,V,Z) = (0,1,2). Since £F; = —3V? = -3,
+4F, = 37? = 12, from equation (16), we find £F> = —3. Therefore, we obtain
a triple (+Fy,£F5, +F3) = (—3,—3,3) which does not satisfy the condition
P FyF3 < 12. Therefore, we finished the proof of Theorem

4 Additional condition: upper bound for the pa-
rameter c

In this section we show that if have an upper bound on the parameter ¢, then
we can find an upper bound for the index. We will follow the method of I. Gaal
and G. Nyul given in [§]. We briefly sketch the main steps of our procedure.
We start with equation . Since, in our case, unknowns F; in @, are of the
form F; = 2%3P% i = 1,2,3, we obtain a S-unit equation over Z. In order
to find all elements « with index p () = Fy FaF3 = 293°, we have to find all
primitive solution of equation and all possibilities for common factor 2435
of Fy, Fy, F3 (see Section . To find all possibilities for the exponents in the
common factor 2435, we need to determine how rational primes 2 and 3 split
in three distinct quadratic subfields of the quartic field L.. We show that the
exponents A and B attain only very small values (see Section . If have an
upper bound Cj on the parameter ¢, then we are able to find an upper bound for
the exponents in primitive solutions using p—adic linear form estimates and that
upper bound depends only on Cy (see Section . Since our estimates giving
large upper bounds for the exponents, we can diminish those upper bounds using
reduction procedure (see Section. Unfortunately, reduced upper bounds can
not be expressed as a function of Cj since reduction procedure can be used only
for particular value of the parameter c.

4.1 S-unit equation

Let « be a primitive integral element of the form with ged (22, 23,24) = 1
and let index of a be p (o) = 293" where @ > 0 and b > 0 are arbitrary but
fixed integers. We have shown that p («) is of the form u () = Fy FoF3, where



Fy, Fy, F3 satisfy relation @ Since p (@) = 2¢3% implies
F=2%3% 0<a;<a, 0<6;<b, i=1,2,3,

then (F}, Fy, F3) is solution of the S-unit equatlon over Z.

We will find all primitive solutions ( f1, f2, f3 in positive integers (those
with ged (f1, f2, f3) = 1). Then all solutions of ([7)) are of the form F; = f;-2435,
i =1,2,3, where 2438 = gcd (Fy, Fy, F3) = P. Set

fi=2%3% §=1,2,3.

Then equation ¢ (£f3) — (c+4) (£f1) = (¢ — 2) (£4f5) can be rewritten in the
form
F (c+4) 243 + 2%23%2 = + (¢ — 2) 292 F23¢3, (19)

Note that, since ¢ > 3, ¢ = 1,3,7,9 (mod12) and ¢,c — 2,¢ + 4 are square-
free integers, we have ords (c+4) = ords (¢) = orda (¢ —2) = ordz (c+4) =
ordz (c —2) = 0 and ords (c) = k where ¢ = 3¥¢;, 3¥ ||c and k = 0 or 1. Now, if
the equation ([9) we simplify with possible common factors 2 and 3, we obtain
equation

T (c+4)2%3% £ ¢12%3% = 4 (¢ — 2) 2%3%, (20)

where at most one of the df,d5, ds and at most one of the e, e}, e is positive.
After determined d,d), ds, €}, €h, ey, values of f; = 2%3% i = 1,2,3, we can
obtain using the followmg:

,0 0) then (dl,dg,dg) = (dll + 2,2,0);

(dy,dy, d3) = (dy
o If (d},d, dy) = (0,d,0), then (dy,da,d3) = (2,ds +2,0);
o If (d},d}, dy) = (0,0,1), then (dy,ds,d3) = (1,1,0);
o I (&), dy, db) = (0,0,d,), di > 2, then (di,ds, dy) = (0,0,d; —2);

If c=1,7 (mod 12), then (e1,es2,e3) = (e}, €5, €4);
e If c=3,9(mod 12) and

- (61762’63) (61,0 0) then (61762363) = (6/1 + 1’07 1);
— (e}, e5,e5) = (0,0,€%), then (e1,e2,e3) = (1,0,e5 +1);
— (ef,eh,e5) = (0,€5,0), e > 1, then (0,e2,0) = (0,e5 — 1,0).

It is easy to see that exponents in cannot all be equal to zero. Fur-
thermore, if ¢ > 3, than we have: if there exist ¢ such that d; # 0, then there
exist j such that e; # 0, and vice versa. Also, i # j must hold. If ¢ = 3,
then we have the following exceptions: (d},d},d5, e}, e, e4) = (0,0,3,0,0,0),
(0,3,0,0,0,0), (0,0,1,0,0,1), (0,1,0,0,1,0) . Therefore, from now on, we will
assume that exactly one d; is positive and exactly one €] is positive, where i # j.
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4.2 ged (Fy, Fy, F3) calculations

In order to find an upper bound for the exponents in P = ged (Fy, Fy, F3) =
2438 we will follow of a method of I. Gaal and G.Nyul [8, Section 6]. First,
we need to determine how rational primes 2 and 3 splits in three distinct
quadratic subfields of the quartic field L. = Q (y/m, v/n), namely in the fields

M; =Q(v/n), My =Q(y/m), M3 = Q(\/m), where mi; = ¢+ 4, n1 = ¢,
m=(c+4)(c—2),n=c(c—2). Using for example [I| p.245], we find the fac-
torization of the principal ideals (2) and (3) into prime ideals of rings of integers
O, t =1,2,3 as follows: In the ring Oy, , we have

(2) = (2,1+ V)" = P?
(3) = (3,v/n)> = P, if c = 3,9 (mod 12)
(3) =Ps, if c=1,7(mod 12).
In the ring Oyy,, we obtain
(2) = (2,14 ym)’ = P2,
(3) = (3,a+ vm) (3,a — v/m) = P5Ps, where a*> = m(mod 3),
since #2 = m(mod 3) is solvable. In the ring Oyy,, we have
(2) = P,
(3) = (3, Vmani)® = P2, if ¢ = 3,9 (mod 12),
(3) = Pg, if c=1,7(mod 12).
Iging primitive solutions f;, ¢ = 1,2, 3 of we can rewrite system , and
(5) as

(cV)? —nU? = £5, P (21)
((c+4)V)> —mZ* = +s,P (22)
(cZ)* = miniU? = +s3P (23)

with 51 = cf1, s2 = (c+4) fa, 53 = 4cfs and P = 2438, Let (U,V, Z) arbitrary
but fixed solution of system , and . Then, following [8, Section 6],
we set

|y Bi P14 P2 Dy; | Dy
1 c vn cV—y/nU cV+y/nU 0 3
2 c+4| vVm | (c+4)V—=ymZ | (c+4)V+y/mZ | 1 3
3 c ming cZ—\/minU cZ+/min U 0 2

and by [8, Lemma 3] we obtain the following:

e Ideal (2) = Pgs is prime in the ring of integers Oy, of the field M3. Since
¢ =c+4=1(mod?2), we have ordp, (2¢) = 1 and ordp, (2\/0(0 + 4)) =
1, and by [8, Lemma 3, (ii)], we obtain

A < 2max {ordPG (2¢) , ordp, (2 cle+ 4)) }+D23 = 2max {1,1}+2 = 4;

11



e Let ¢ = 1,7(mod 12) . In this case ideal (3) = P3 is prime in the ring of
integers Oy, of the field M;. Since ¢ = 1 (mod 3) and ¢ (¢ — 2) = 2 (mod 3)

we obtain ordp, (2¢) = 0 and ordp, (2 c(e— 2)) =0, and by [8, Lemma
3, (i)], we have

B < 2max {0Td733 (2¢) , ordp, (2 c(e— 2))} +Dy; =0, ie. B=0;

2

e Let ¢ = 3,9 (mod 12) . In this case we have (3) = <3, Vele— 2)> = P37 in
the ring of integers Oy, of the field M;. Since we have 3 ||c and 3 1 (¢ — 2),
then ordp, (2¢) = 2 and ordp, (2 clec— 2)) = 1, and by [8, Lemma 3,

(iii)], we obtain

B < max {07"d7>2 (2¢) ,ordp, (2 cle— 2))} + Dy =max{2,1} +0=2.

Hence, we obtain:
o If c=1,7(mod12), than ged (Fy, Fy, F3) = 24, where 0 < A < 4;
e If ¢ = 3,9 (mod 12), than ged (Fy, Fy, F3) = 2435, where 0 < A < 4 and
0<B<2
4.3 Upper bound for the exponents

Let us denote 8, = c+ 4, 6o = ¢—2 and 03 = ¢;, where ¢y = cif ¢ = 1,7
(mod12) and ¢; = ¢/3 if ¢ = 3,9 (mod 12). Then ords (6;) = ords (6;) = 0 for
all [ =1,2,3. We assumed that in exactly one d} is positive, exactly one e}
is positive and ¢ # j. Therefore, let d; # 0 and e; # 0, where i # j. Then, from
, for distinct integers i, 7, k € {1,2,3}, we obtain

1< d; = ordy (£0;3% F 0,3 ) = ords (3@9 - (i"’“))

0
/ d’ d/, d’ Ok
1 <¢€} =ords (i9i2 i F 02 ’@) =ords [ 2% — i?
In all above cases we have expressions of the form
ordy (o —as) (24)

where b; is positive integer and a1,z € Q. We will apply estimates of Y.
Bugeaud and M. Laurent [2, Corollaire 2] on (24)).

Let us denote by h («) the absolute logarithmic height of the algebraic num-
ber «a, given by h (0) = 0 and by

h(a) = élog <|a| lf[l max {1, al|}>
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if a(zx—aq)...(® —ay) is the minimal polynomial of o # 0 over Z. We have
h(2) =log2, h(3) =log3, and

h :te—k log 0y - Hmax 1, ie—k
975 9t

where t = ¢ or j. Therefore, if 8, = 61 or §; = 0y, then
If & = <=2 op € then

< ) log (c+4).
6, cy c—27

b :I:G—k _ log(c—2), ifc=3,9(mod12),
0, ) | logey =loge, if c=1,7(mod12).

}) log (max {0s, 0} |

Using the notations from [2], we have K = Q (i%’;,?) =Q <:t§—’;,3) = Q,
f=1land D= @ =1. Let A; > 1 and Ay > 1 be real numbers such that

I
max{h(ozi), ng} <logA;, i=1,2.

In our case we have

1
max{h(al), ng} = log 3,

1
max {h (), ng} = max {log max {6, 0} ,logp} <log(c+4),

so we can take log A; = log3 and log A = log (¢ + 4) . Now, we have

;) bl + b2 - b1 4 1
- DlogA;  DlogA; log(c+4) log3’
where by = d; if p =3 and b; = € if p = 2. Hence, if ¢ > 3, then [2, Corolllaire
2] implies

481 € 1 ’
d; d8log3 max 1 log 1 + +loglog2 + 0.4, 10 log (¢ +4)
log ( log 3

<
~ (log 2)4 c+4)
481og 3 € 1 2
=4 02g)4 (max{log (log7 T log3 3> Floglos2+04, 10}) osletd)
og
(25)
and

, 36 d! 1 2
1 ! loglog3 +0.4,101og 3 1 4
e} (10g3)° max < log g (e 1) + log3 +loglog3 + 0.4,101og og (c+4)

36 d, 1 ?
(log 3)3 max < log log 7 + log 3 + loglog 3 4+ 0.4,101log 3 log (c+4).
(26)

| /\

IN
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Let 3 < ¢ < Co and T (c) = max {d}, dj, ds, €}, €y, 4} = max {dj, e} } .
If T (¢) = d, then from we have

29845 - log (Co + 4) , if e/ < 41448
e <d < o 2
i =% =19 298447 (log (10g7 + @) +loglog 2 + 0.4) log (Co +4), if ¢ > 41449.
(27)
If T'(c) = ¢, then from (26| we obtain
3276.87 - log (Co + 4), if d/ < 70107
d; S 6/4 S d’ 1 2 .
i 27.16 (1og (1og’7 + @) +loglog3 + 0.4) log (Co +4) if d, > 70108.
(28)

Therefore, if 3 < ¢ < Cy, then T (¢) < Ty (Cp), where Ty (Cy) we can obtain
from inequalities and (28). Note, for calculating Tp (Cp) it is enough to
consider inequality

2
1
© < 228.447 - <1og (x + ) +loglog2 + 0.4) log (Co+4).  (29)

log7  log3
Indeed, if inequality implies @ < Ky, then T (¢) < Ky, so we take Ty (Cp) =
K. For example, if ¢ < Cy = 100, then from inequality we obtain T (¢) <
To (100) = 132125. Similarly, we find T (10'°) = 899597 and T (3) = 45234.
Since estimates of Y. Bugeaud and M. Laurent [2, Corollaire 2] give a large
upper bound for the exponents in , we can diminish that upper bound using
[6, Lemma 4.1]. Note that is easy to convert into expressions with p—adic
logarithms. Namely, by [13}, Lemma I1.9], we have d; = 1 or

2 < d, = ordy (369 - (iZ’“)) = ordy <(in) - 3% — 1)
' Kk

= ords | log, iﬁ + ¢’ logy 3 (30)
O J
and
/ 0y, 0; /
d’ k i d’
1< e; = ords <2 i — (:I:HZ)) = ords <<i9k> - 2% — 1)
0; ,
= ords | logg ie— + d; logs 2 (31)
k

since (ig—;) . 3% is 2—adic unit in Q5 and (iz—i) .29 is 3—adic unit in Qs
for all distinct integers i,j,k € {1,2,3}. By repeating the p—adic reduction
procedure given in [0, Lemma 4.1] for linear forms in p—adic logarithms from
and as long as the reduced bounds are less than the original one, for
each ¢, 3 < ¢ < Cy, we can obtain

d:=d,(c) <M (¢) and ¢} :=¢;(c) < NY (),
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where M g) (c) and Nl(%j) (c) are the best possible bounds for d; and e, respec-
tively. Denote

Mp (Co) = My d Ng(Co) = N
()= oo, Mr (O and Ne(Co) =, max o, N7 (9

(where four exceptional cases for ¢ = 3 given in Section are also included).
Then

d; S MR (Co) S TO (C()) and 6; S NR (CO) S TO (Co) ,
forall 3 < ¢ < Cpandalli,je{l,2,3}. The results from Sectionnow imply
that the values of dy, ds, d3, e1, es, es are also bounded which again implies,
together with the results from Section that values of the F; = 2%itA3ei+B
1 =1,2,3 are bounded too. Precisely, we obtain

3
ordy (F1FyFs) =Y di+3A < (Mg (Co) +4)+3-4 = Mg (Co)+16 = My (Co) ,

i=1

and
3
ords (F1F2F3) = Zej + 3B
j=1
< NR (C()) = NU (Co), ife= 1,7(mod 12),
- (NR(CQ)+2)+3'2:NR(00)+8:N0(00), ifcz3,9(mod12).

Note that reduction procedure can be used only for particular values of the
parameter ¢, so, unfortunately, reduced upper bounds Mg (Cy) and Ny (Cp)
are not effectively computable constants if Cy is too large. Therefore, if we put
effectively computable constant Ty (Cp) instead Mg (Cy) and Ng (Cp) in above
formulas for My (Cp) and Ny (Cp), we have proved Theorem

4.4 The reduction procedure
Let 3 < ¢ < Cy. Suppose
T (c) = max {dy, d}, dj, €], €3, €5} = max {d, e;-} < To (Co) .
where d; # 0, €’ # 0 and i # j. We consider linear forms
Ao =log, (igi) +eilogy3 and Az = log; (ig;) + d; logs 2, (32)

where i, j, k are distinct integers from the set {1,2,3} and 6, = c+4, 03 = c—2,
03 = ¢1. We can diminish the upper bound Tj (Cy) applying [6, Lemma 4.1] on
linear forms in . Using the notations from [6, Lemma 4.1] we have n = 2,
p=2or 3,

X = max {|z1], x|} = max {1,€}} =€ < T (c) < Ty (Co) = Xo if p =2,

X = max {|z1], |z2|} = max{l,d;} =d; <T(c) <Tp(Cy) = Xy if p =3,
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91 = log, (:I:ZJ> , Ug =logy3 if p=2,
k

0;
91 = logs (i9> , U9 =logy2 if p=3.
k

Then we have

ordy(Ag) =d; > ¢e; =0+1-¢; if T(c)=d;

!
%)
ords (Az) =¢j; > d; =0+1-d; if T(c)=e}.
Therefore, constants ¢; and cp from the [6, Lemma 4.1] are given by (c1,c2) =
(0,1). Since

ords <log2 (i?)) > ords (logy 3) = 2,
k
0;

ords | logs ie— > ords (logg 2) =1,
k

for all distinct integers ¢, 7, k from the set {1,2,3} (see below), then, following
[6, Lemma 4.1], we define

0;
As log, (i%> .
A/2=1og23:_ Thom3 +e=— (V) +¢),if ef > 1 and p =2,
(33)
0;
A3 10g3 (iﬁ)
A/: = | - 7 dl.:_ﬁi d/ fd/>2 dp—3.
’ logz 2 logs 2 tdi (Vik) +d;, ifd;>2and p=3

(34)

For 0 < pp € Z and ;€ £ let 195‘2”) be a unique rational integer with

ordy (Vg5 — 191%”)) > pp, and 0 < 19,%”) <ptr —1,wheret=jif p=2andt=1
if p= 3. Denote by I';,, the lattice spanned by the columns of the matrix

1 0
19)(;;;7) pﬂp ’

_ po — 1+ ordy(logy3) — 0
- 1

Let
N§” (e)

:’u,2+1

and 1 ds (logz2) — 0
i —1+4or o) —
My ) (c) = i 13 & = H3.

Denote by bﬁ” ) the first vector of the LLL—reduced basis of r,, If

n—1

||| > 257 V2 1o (Co) = 2Ty (o),

then, by [0, Lemma 4.1] we have:
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- If T (c) = dj there is no e} with No(j) () <e
- If T'(c) = ¢} there is no dj with M (¢) < d

Using these new bounds, the reduction can be repeated, as long as the new
bound for e;. or d; is less than the previous one. Finally, we obtain:

-If T(c) = dj, then 1 < ¢} < Ng) (¢), where Nl(%j) (¢) is the best possible
/

bound for €;

and all possible values for (dj,e/) we obtain from equation

2di = iw, where 1 < e;- < ngj) (c) and d} > e;-.

- Similarly, if 7'(c) = €/, then 1 < d} < Mg) (¢), where Mg) (¢) is the best

possible bound for dj and all possible values for (d, eg), we obtain from

equation 3% = i%, with 1 < d} < MI(;) (c) and e} > di.

In order to find all possible elements with an index of the form 2¢3° for given
¢, 3 < ¢ < Cy, we have to perform above reduction procedure for each of six
possible couples (dg, e}) , where i # j. Having determined all possible sextuples
(dy,db, ds, e}, eh, es), we have to find all possible sextuples (di,ds, ds, e1, €2, e3)
(a connection between them is given in Section which give us all possi-
ble primitive triples (fi, f2, f3), where f; = 2%3% i = 1,2,3. After that,
all solutions of equation which are of the form (£fi,£f2,£f3), we ob-
tain using direct testing. Now all required triples (£Fy,+=F5, £F5) are of the
form +F;, = +£2438, i = 1,2,3, where 0 < A < 4 and B = 0if ¢ =
1,7(mod12) or 0 < B < 2 if ¢ = 3,9(mod 12). For each explicit value of
the triple (£F}, £F5, £F3) we have to solve a corresponding system (3)), and
(B). Every solution (U,V,Z) of that system which is of the form (6)), where
ged (x2, 3, w4) = 1, determines an integral element « of the form with
index p(a) = F1FyF5. For 3 < ¢ < Cp, we can give solutions in the form
(¢; pla); a)= (c; 2030, wg,xg,x4).

Computing ord, (log‘p (ig—;)) and 19%0)
From a definition of p—adic logarithm follows that, in our case, it is enough to
find

c—2 c—2 c1
m, logp and logp 07

0
log,, é = log,

for p =2 and p = 3 since
O 0; 0,
log,, % = —log, o and log, (—0k> = log, o

Also, we have ord, (logp g—;) = ord, (— log,, g—;) .

17



Using presentation of the p—adic logarithm as Taylor series, first we find

1 3 s n 23n+2
log23:§log2 (1-(-2%)) = 20(—1) P

1 & no 3t
logz 2 = ) logs (1 —(=3)) = Z:O (1) m,

which implies ords (log, 3) = 2 and ords (logs 2) = 1, respectively.
Similarly, we find all log,, at forp=2and p=3 from which it follows that

ords (10g2 ( g )) > ords (logy 3) = 2,
k

ords <log3 (i?)) > ords (logs 2) = 1.
k

for all g—; = i+4, - 2 C+4 Therefore since we follow [6, Lemma 4.1], the p—adic

log, (:t%)
integers ¥; 1, and ¥; ;, in 1 D and 1 34) have to be defined as: ¥; = g3

logs (£ ek

ifp=2and ¥ = —— =~ Tog, 2 if p=3.
Additionally, using the presentation of the p—adic logarithm as Taylor series,
each o := ¥4 we can rewrite in the form

00
+
o= nz:: in o aq
= o~ = —,
>b,
n=0

where ord, (a1) > 0 and ord, (a2) = 0. Then, for every 0 < u € Z, we can

n1
find sufficiently large integers ny and mny such that of = £ a, and of =
n=0
no ’
S b, satisfy a(®) = 21 (mod p*) , where o™ is a unique rational integer with
n=0 2
ordy,(a — oz(“)) > pand 0 < oW < pt — 1. We obtain the following

n1

: +2 an
(w _ £1082 G _ n2=:0
a't) = Tor 3 (mod 2) = ————— (mod 2"),
n 93n
&2 E_:O(_l) 3+1

+>a
+1 "
al) = 10g3 (mod3#) = —— =0 (mod 3"),
(0] n n
5 PICO



ni
where ng = 2u — 3 if p > 3, and ny = 2 if u = 1,2. The values of + 5 a,, are

n=0
given in the following two tables:
1) Case ¢ = 1,7 (mod 12) . Note, in this case we have ¢; = c.
ni
o =a(modpt) | 0<I<p—1 ny = ny) af==+>a,
n=0
:I:lOgQ(%) d2u d 1 f—i—1 " ni _93k 0;21 n+1
Tog, 3 (mo ) oraz (T) \\ 1+2 J 20 (n+1)c2k+2
+log, (£3) c+1 -1 o1 g3kgnHl(eflyr T
71022 3+4 (mod 2#) ords ( 3 ) \‘#ZJ& J i7§04(7L+1)(C+2)2k+2
ilogQ(%) 1 92k
log, 5 (mod 2%) ) pol inz::O (D) (e )T
N
=+ logs 00;2 o \‘ l J’l N1 g2k+lgn(c—1)ntl
logg 21 ) (mOd 3H) O’(‘dg ( 31) 2/.L — 3, if | = 0,/1 > 3 + 70_ (n+1§623k+)2
2,ifl=0,p=1,2 "=
+logy (%) L 20 —=3,if u >3 & gn+ign
Togsz (104 3%) ) 2,if p=1,2 iéé% (D) e+
EEy
+logs (2 ct2 l ’ ni 93k+3gn (ct2\nt1
‘T%%Qmwﬁ” ords (52) | 24 -3,ifl=0,u>3 i;%—@;mﬁﬁ%r
2,if l=0,p=1,2 o

2) Case ¢ = 3,9 (mod 12) . Note, in this case we have ¢; = §.

ni

o) = o (mod p*) 0<i<p-—-1 nlzngl) oy =+£> ay,
n=0
+ log, (=2 f n 22k (e53)n Tl
2l moa2e) | oy (55 et £ $
n=0
+log, (<22 - I e
1:5)22?4) (mod 2#) ords (cgl) VLHI- IJ + Z:o — 4(n+1)(c(+z)2)k+?
=+ log (;714) c+3 —1—3 &, 24k+2(0+6)"+1(ﬁ)n+1
102gz 3+ J (mOd 2”) ords ( 2 ) \“ 1+4 J Zl:nz::() 32k+2(n+1)(c+42)2k+2
N
+logs (57 e L ! J ! dal , 2ntign (eg@)ntt
lo;£ 21 ) (mod 3#) ords ( 33) U —3,it1=0,u>3 + ZO (—1)7' (n+$)03;1+)1
2,ifl=0pu=1,2 "
+logs (&2 2 — 3, if p > ny gn+lgn
——ﬂ%§512*0n0d3“> - 2,ifp=1,2 2~ e
=l > 9
+logy (G4 c+3)(c+6 L 1J’ = ™ p 23%+2((eEB3)(et6) Yt
lozg 2+4) (mods,u) OTd3 (( + ); + )) 2M - 3’ ifl = 17 i > 3 + Z:O (—l)n 3(71/5_1)(63-4)%12
2,ifl=1,pu=12 "

If I > p— 1, then a® = o (mod p*) = 0.
Taking the appropriate values of o} given in the tables above, we can calculate

the values of 19%") at each step of the reduction procedure.
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