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Abstract

Let M = Q(
√
−D) be an imaginary quadratic field with the ring of integers ZM

and let ξ be a root of polynomial f(x) = x4 − 2cx3 + 2x2 + 2cx + 1, where c ∈ ZM ,
c /∈ {0,±2} . We consider an infinite family of octic fields Kc = M (ξ) with the ring
of integers ZKc

. Our goal is to determine all generators of relative power integral basis
of O =ZM [ξ] over ZM . We show that our problem reduces to solving the system of
relative Pellian equations

cV 2 − (c+ 2)U2 = −2µ, cZ2 − (c− 2)U2 = 2µ,

where µ is an unit in ZM . We solve the system completely and find that all non-
equivalent generators of power integral basis of O over ZM are given by α = ξ, 2ξ −
2cξ2 + ξ3 for |c| ≥ 159108 and |c| ≤ 1000, c /∈ Sc (where Sc is a set of exceptional cases,
|Sc| = 28). Also, we find that, in all above cases, O admits no apsolute power integral
basis if −D ≡ 2, 3(mod 4).

1 Introduction

Let K be an algebraic number field of degree n and ZK its ring of integers. It is a classical
problem in algebraic number theory to decide if K is monogenic field, or, equivalently, if
K is a field for which there exist an element α ∈ ZK such that ring of integers ZK is of
the form ZK = Z [α]. The powers of such element α constitute a power integral basis, ie.
an integral basis of the form

{
1, α, α2, ..., αn−1

}
. In general, if {1, ω2, ..., ωn} is an integral

basis of K and the primitive integer α ∈ ZK , K = Q(α), is represented in that integral
basis as α = x1 + x2ω2 + ...+ xnωn, then

I (α) =
[
Z+
K : Z [α]+

]
= |I (x2, ..., xn)| ,

where Z+
K and Z [α]+ respectively denote the additive groups of the ring ZK and the poly-

nomial ring Z [α]. The polynomial I (X2, ..., Xn) is a homogenous polynomial in n − 1

variables of degree n(n−1)
2 with rational integer coefficients which is called the index form
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corresponding to the integral basis {1, ω2, ..., ωn}. The positive rational integer I (α) is
called an index of the element α and it does not depend on x1. Therefore, the primitive
integer α generates a power integral basis if and only if I (α) = 1. Consequently, the number
field K is monogenic if and only if the index form equation

I (x2, ..., xn) = ±1 (1)

is solvable in rational integers. The problem of determining all generators of the power
integral basis reduces to the resolution of diophantine eq. (1).

The index form equations are mostly very complicated diophantine equations for number
fields of large degree n. In some particular fields, by studying the structure of index form,
it has been found a correspondence between the index form equation and simpler types of
equations (for a survey see [6]). For example, in [8, 9], I. Gaál, A. Pethő and M. Pohst
showed that a resolution of index form equations in any quartic field can be reduced to the
resolution of cubic and several corresponding Thue equations. In [7], I. Gaál, and M. Pohst
extended some basic ideas and developed a method of determining generators of a power
integral basis to relative quartic extension fields K over base fields M . The method is much
more complicated than in the absolute case. For example, instead of Thue equations we
obtain relative Thue equations over a subfield M . The generalization of known methods to
relative extensions leads to various nontrivial problems. Those problems occur primarily
because a relative integral basis does not have to exist and also, the ring of integers of base
field M is not necessarily an unique factorization domain.

Algorithms for solving index form equations have been applied in several infinite para-
metric families of certain fields. In particular, I. Gaál and T. Szabó in [10] considered three
infinite parametric families of octic fields that are quartic extensions of imaginary quadratic
fields. By applying the method described in [7] and by using results on infinite parametric
families on relative Thue equations given in [15] and [12], they found all non-equivalent
generators of relative power integral basis for infinite values of parameter.

In this paper, we consider the following problem. Let M be an imaginary quadratic
field with the ring of integers ZM and let ξ be a root of polynomial

f (x) = x4 − 2cx3 + 2x2 + 2cx+ 1,

where c ∈ ZM , c /∈ {0,±2} . We consider infinite family of octic fields Kc = M (ξ) with ring
of integers ZKc . Since integral basis of Kc is not known in a parametric form, our goal is
to determine all generators of relative power integral basis of O =ZM [ξ] over ZM (instead
of ZKc over ZM ).

The paper is organized as follows. In Sections 2 and 3, we briefly describe the method
of I. Gaál, and M. Pohst given in [7] and apply that method to the problem described
above. In Section 4 we show that our problem reduces to solving the system of relative
Pellian equations over M and apply some results given in [12]. In Section 5, by combining
congruence method with an extension of Bennett’s theorem given in [12], we solve the system
completely and find all non-equivalent generators of power integral basis of O over ZM if
absolute value of parameter c is large enough (|c| ≥ 159108). In Section 6 we assume that
|c| < 159108 and apply a theorem of Baker and Wüstholz and a version of the reduction
procedure due to Baker and Davenport. Without proving that the corresponding linear
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form Λ 6= 0, we cannot apply Baker’s theory. The proof is rather complicated and involves
several cases. We were not able to perform reduction procedure for all values of |c| < 159108
because we estimated that it would last more than 1010 sec. (in Mathematica on an simple
PC). So, we have performed reduction procedure for |c| ≤ 1000. Section 7 is devoted to the
exceptional cases c ∈ Sc. For c ∈ Sc at least one of the equation of our system of Pellian
equations has additional classes of solutions or there exists only finitely many solutions of
those equations. In the last section we examine whether the order O =ZM [ξ] admits an
absolute power integral basis.

Our main result is the following theorem.

Theorem 1 Assume that D is a square free positive integer, M = Q
(√
−D

)
is an imagi-

nary quadratic with ring of integers ZM , ξ is a root of the polynomial

f (t) = t4 − 2ct3 + 2t2 + 2ct+ 1,

where c ∈ ZM , c /∈ {0,±2} and Kc = M (ξ) is an octic field with ring of integers ZKc. Then
all non-equivalent generators of power integral basis of O =ZM [ξ] over ZM are given by

α = ξ, 2ξ − 2cξ2 + ξ3 (2)

in each of the following cases:

i) for all D and |c| ≥ 159108;

ii) for all D, c /∈ Sc and |c| ≤ 1000 or Re(c) = 0;

iii) c = ±1 and D = 1, 3,

where

Sc = {±1,±
√
−1,±1±

√
−1,±2±

√
−1,±1±

√
−2,±1±

√
−3,
±1±

√
−3

2
,
±3±

√
−3

2
}, (3)

with mixed signs.

Proof of Theorem 1. Immediately from propositions 14, 23, 24 and Corollary 21.
The current work supports the following conjecture.

Conjecture 2 All non-equivalent generators of power integral basis of O =ZM [ξ] over ZM
are given by (2) for all D and c /∈ Sc.

Also, we prove the following theorem.

Theorem 3 If −D ≡ 2, 3 (mod 4) and all non-equivalent generators of power integral basis
of O =ZM [ξ] over ZM are given by (2), then O admits no absolute power integral basis. In
particular, in the cases given in Theorem 1, O admits no absolute power integral basis.
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2 Preliminaries

Since we are going to apply the method of I. Gaál and M. Pohst given in [7], we begin with
a brief description of it.

Let M be a field of degree m and K its quartic extension generated by an algebraic
integer ξ over M , ie. K = M (ξ). ZK and ZM denotes the ring of integers of K and M ,
respectively. Assume that a relative minimal polynomial of ξ is given by

f (t) = t4 + a1t
3 + a2t

2 + a3t+ a4 ∈ ZM [t] .

Also, assume that d is the smallest natural number with the property dZK ⊆ ZM [ξ] and
i0 =

[
Z+
K : ZM [ξ]+

]
. Then each α ∈ ZK can be represented in the form

α =
1

d

(
a+ xξ + yξ2 + zξ3

)
, a, x, y, z ∈ ZM . (4)

The (absolute) index of α can be factorized in the form

I(α) =
[
Z+
K : ZM [α]+

] [
ZM [α]+ : Z [α]+

]
. (5)

If the relative index IK/M (α) =
[
Z+
K : ZM [α]+

]
is equal to 1, then α can only generate a

power integral basis in K (equivalently, I(α) = 1). Let

F (u, v) = u3 − a2u
2v + (a1a3 − 4a4)uv2 +

(
4a2a4 − a2

3 − a2
1a4

)
v3 (6)

be a binary cubic form over ZM , and

Q1 (x, y, z) = x2 − xya1 + y2a2 + xz
(
a2

1 − 2a2

)
(7)

+ yz (a3 − a1a2) + z2
(
−a1a3 + a2

2 + a4

)
,

Q2 (x, y, z) = y2 − xz − yza1 + a2z
2 (8)

be ternary quadratic forms over ZM . In [7] the following assertion was proved. If α ∈ ZK
given by (4) generates a relative power integral basis of ZK over ZM , then there is a solution
(u, v) ∈ Z2

M of

NM/Q (F (u, v)) = ±d
6m

i0
, (9)

where
u = Q1 (x, y, z) , v = Q2 (x, y, z) . (10)

Note that the equation (9) implies

F (u, v) = δε, (11)

where δ is an integer in M of the norm ±d6m/i0 and ε is an unit in M . Hence, the full set
of nonassociated elements of this norm have to be considered.

In order to find all non-equivalent generators of power integral basis of ZK , the first step
consists of solving the equation (11), ie. determining all (nonassociated) pairs (u, v) ∈ Z2

M

such that all solutions of (11) are of the form (ηu, ηv), where η ∈M is an unit. In the next
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step, we have to find all (x, y, z) ∈ Z3
M corresponding to a fixed solution (u, v) by solving

the system (10). So, for a given solution (u, v) of (11), we solve the following equation

Q0 (x, y, z) = uQ2 (x, y, z)− vQ1 (x, y, z) = 0. (12)

Using the arguments of Siegel [14, p.264] (see also [13]), it is possible to decide if (12) has
nontrivial solutions and if so, all solutions of (12) can be given in a parametric form (with
two parameters p and q). By substituting these parametric representations of u and v into
the original system (10), it can be shown that at least one of the equations in (10) is a
quartic Thue equation over ZM . By solving that Thue equation, we are able to determine all
parameters (p, q) ∈ Z2

M up to unit factors in M . Hence, we can calculate all (x, y, z) ∈ Z3
M

up to an unit factor of M , as well. Then all generators of power integral basis of ZK over
ZM are of the form

α =
1

d

(
a+ η

(
xξ + yξ2 + zξ3

))
,

where a ∈ ZM and the unit η ∈M are arbitrary. Consequently, all non-equivalent genera-
tors of power integral basis of ZK over ZM are given by α = 1

d

(
xξ + yξ2 + zξ3

)
. For more

details see [7].
Our purpose is to describe the relative power integral bases of either O =ZK over ZM (if

the integer basis of K is known) or of O =ZM [ξ] over ZM (otherwise). Note that in the case
O =ZM [ξ], ξ itself is a generator of a relative power integral basis but we wonder if there
exist any other generators of power integral bases. Also, we have i0 = d = 1. Consequently,
equation (9) is of the form F (u, v) = ε, where ε is unit in M and non-equivalent generators
of power integral basis of O over ZM are of the form α = xξ+yξ2+zξ3, where (x, y, z) ∈ Z3

M .

3 Resolution of relative cubic equation

Let D be a square free positive integer and let M = Q
(√
−D

)
be an imaginary quadratic

with ring of integers ZM . Let ξ be a root of polynomial

f (t) = t4 − 2ct3 + 2t2 + 2ct+ 1, (13)

where c ∈ ZM , c /∈ {0,±2}. We consider an infinite family of octic fields Kc = M (ξ) with
ring of integers ZKc . It is easy to see that if c = 0,±2, then f (t) is a reducible polynomial
and so Kc is not an octic field. Therefore, from now on we assume that c ∈ ZM\ {0,±2}.
Since the integral basis of Kc is not known in a parametric form, our goal is to determine
all generators α of relative power integral basis of O =ZM [ξ] over ZM (instead of ZKc over
ZM ). In this case the equation (11) is of the form

F (u, v) = (u+ 2v) (u− 2 (c+ 1) v) (u+ 2 (c− 1) v) = ε, (14)

where ε is an unit in M, ie. ε ∈ {±1,±i,±ω,±ω2} ∩ ZM and (7), (8) can be rewritten as

Q1 (x, y, z) = x2 + 2cxy + 2y2 + 4
(
c2 − 1

)
xz + 6cyz + z2

(
4c2 + 5

)
Q2 (x, y, z) = y2 − xz + 2cyz + 2z2.

According to (14) we conclude that u− 2v, u− 2 (c+ 1) v, u+ 2 (c− 1) v are units in ZM
and that implies v = 0. Therefore, all solutions of (14) are given by (u, v) = (η, 0), where
η is an unit in ZM .

5



4 Simultaneous Pellian equations

In this part we show that solving the equation (12) for (u, v) = (η, 0) can be reduced to
solving a system of simultaneous Pellian equations. Since v = 0, the equation (12) implies

Q2(x, y, z) = y2 − xz + 2cyz + 2z2 = 0, (15)

and (x, y, z) = (2, 0, 1) is one nontrivial solution of (15). Therefore, all solutions can be
parameterized by

x = 2r + p, y = q, z = r, (16)

where p, q, r ∈M and r 6= 0. By substituting (16) into (15), we obtain

q2 = r(p− 2cq). (17)

Further, if we multiply (16) by k = p− 2cq, we get

kx = 2q2 + p2 − 2cqp, ky = qp− 2cq2, kz = q2. (18)

We can assume that k, p, q ∈ ZM and since the corresponding determinant equals 1, the
parameter k must be an unit in ZM . Now, by substituting kx, ky, kz given by (18) into the
equation Q1(x, y, z) = η (η is an unit in ZM ) we obtain

p4 − 2cp3q + 2p2q2 + 2cpq3 + q4 = µ, (19)

where µ = k2η is an unit in ZM . This is a relative Thue equation over ZM and it can be
transformed into a system of Pellian equations

cV 2 − (c+ 2)U2 = −2µ, (20)

(c− 2)U2 − cZ2 = −2µ, (21)

by putting
U = p2 + q2, V = p2 + 2pq − q2, Z = −p2 + 2pq + q2. (22)

Both of equations (20) and (21) are of the same form as the equation already studied in
[12], ie. of the form

(k − 1)x2 − (k + 1)y2 = −2µ. (23)

Proposition 4 ([12, Proposition 5.2]) Let k ∈ ZM and let µ ∈ ZM be an unit. Suppose
|k| ≥ 2 or k is not an element of the set

S = {0,±1,±
√
−1,±1±

√
−1,±

√
−2,±

√
−3,±ω,±ω2},

with mixed signs, where ω = −1+
√
−3

2 . If the equation (23) is solvable, then

µ ∈ {1,−1, ω, ω2}.

All solutions are of the form (x, y) = (±xm,±ym), with mixed signs, where the sequences
(xm) and (ym) are given with the recurrence relations

x0 = ε, x1 = ε(2k + 1), xm+2 = 2kxm+1 − xm, m ≥ 0, (24)

y0 = ε, y1 = ε(2k − 1), ym+2 = 2kym+1 − ym, m ≥ 0, (25)

where ε = 1,
√
−1, ω2, ω corresponds to µ = 1,−1, ω, ω2, respectively.
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For k = c+ 1 Proposition 4 implies that if

c 6∈ {−1,−1±
√
−1,±

√
−1,−2±

√
−1,−1±

√
−2,−1±

√
−3,
−1±

√
−3

2
,
−3±

√
−3

2
},

then all solutions (V,U) of (20) are of the form (±vm,±um), where

v0 = ε, v1 = ε(2c+ 3), vm+2 = (2c+ 2)vm+1 − vm, m ≥ 0,

u0 = ε, u1 = ε(2c+ 1), um+2 = (2c+ 2)um+1 − um, m ≥ 0. (26)

Similarly, if k = c− 1 and

c 6∈ {1, 1±
√
−1,±

√
−1, 2±

√
−1, 1±

√
−2, 1±

√
−3,

1±
√
−3

2
,
3±
√
−3

2
},

then all solutions (U,Z) of (21) are of the form (±u′n,±zn), where

u′0 = ε, u′1 = ε(2c− 1), u′n+2 = (2c− 2)u′n+1 − u′n, n ≥ 0, (27)

z0 = ε, z1 = ε(2c− 3), zn+2 = (2c− 2)zn+1 − un, n ≥ 0.

Finally, if c 6∈ Sc, where Sc is given in (3) and the system of equations (20) and (21) is
solvable, then Proposition 4 implies

µ ∈ {1,−1, ω, ω2}.

Furthermore, if (U, V, Z) is a solution of that system, then

U = ±um = ±u′n

for some n,m ∈ N0, with mixed signs, where um, u′n are given by (26), (27) and ε =
1,
√
−1, ω2, ω corresponds to µ = 1,−1, ω, ω2. Evidently, U = ±u0 = ±u′0 = ±ε. So, the

next step consists of determining eventual intersections of sequences (±um) and (±u′n) for
m,n ≥ 1.

5 Proof of the main Theorem for |c| ≥ 159 108

In this section we apply the congruence method introduced in [4] to obtain lower bound for
|U |. Combining that result with a generalization of Bennett’s theorem, we are able to solve
the system (20) and (21) for large values of |c|.

5.1 A lower bound for a solution

Definition 5 Let a, b, d ∈ ZM and d 6= 0. We say that a is congruent b modulo d if there
exists x ∈ ZM such that a− b = dx. We write a ≡ b (mod d).

Lemma 6 Let |c| ≥ 2. Sequences (um) and (u′n) given by (26) and (27) satisfy the following
inequalities

(2|c| − 3)m ≤ |um| ≤ (2|c|+ 3)m, (2|c| − 3)n ≤ |u′n| ≤ (2|c|+ 3)n, (28)

for m,n ≥ 0.
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Proof. The inequality for |u′n| is given in [12, Lemma 5.5.]. Similarly, we prove the other
one. First, we show by induction that (|um|) is a growing sequence. Evidently,

|u1| = |2c+ 1| ≥ 2|c| − 1 ≥ 1 = |u0|.

If |um| ≥ |um−1| for some m ∈ N, then

|um+1| ≥ |2c+ 2||um| − |um−1| ≥ |2c+ 2||um| − |um| = (2|c| − 3)|um| ≥ |um|.

Since, |u0| = (2|c| − 3)0 and |u1| ≥ 2|c| − 1 ≥ (2|c| − 3)1, the previous inequality |um+1| ≥
(2|c| − 3)|um| also implies that |um| ≥ (2|c| − 3)m for m ≥ 0. Also, since

|u0| = (2|c|+ 3)0, |u1| = |2c+ 1| ≤ (2|c|+ 1) ≤ (2|c|+ 3)1.

and
|um+1| ≤ (2|c|+ 2)|um|+ |um−1| ≤ (2|c|+ 3)|um|,

we obtain that |um| ≤ (2|c|+ 3)m for m ≥ 0.

Lemma 7 Sequences (±um) and (±u′n) given by (26) and (27) satisfy the following con-
gruences

um ≡ ε(1 +m(m+ 1)c) (mod 4c2), (29)

u′n ≡ (−1)nε(1− n(n+ 1)c) (mod 4c2), (30)

for m,n ≥ 0.

Proof. The congruence relation for u′n has already been proved in [12, Lemma 6.2.]. The
other relation can be easily shown by induction. Recall that u0 = ε and u1 = ε(2c + 1).
Hence, (29) is true for m = 0, 1. Now, assume that uk ≡ ε(1 + k(k + 1)c) (mod 4c2), for
k < m and m ≥ 2. We obtain

um = (2c+ 2)um−1 − um−2 ≡ (2c+ 2)ε(1 + (m− 1)mc)− ε(1 + (m− 2)(m− 1)c)

≡ ε(1 + 2m(m− 1)c2 +m(m+ 1)c) ≡ ε(1 +m(m+ 1)c) (mod 4c2),

for m ≥ 2.

Proposition 8 Let c /∈ Sc. If um = ±u′n, then

m ≥
√

2|c|+ 0.25− 0.5 or n ≥
√

2|c|+ 0.25− 0.5 or m = n = 0.

Proof. If um = ±u′n, then Lemma 7 implies that

ε(1 +m(m+ 1)c) ≡ ±(−1)nε(1− n(n+ 1)c) (mod 4c2).

Therefore we have the following congruence relation

ε(1∓ (−1)n) ≡ 0 (mod 2c).
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If ε(1 ∓ (−1)n) 6= 0, then |ε(1 ∓ (−1)n)| = 2 and |c| = 1, which is not possible. So, we
conclude that ∓(−1)n = −1 and

ε(1 +m(m+ 1)c) ≡ ε(1− n(n+ 1)c) (mod 4c2).

Furthermore,

ε

(
m(m+ 1)

2
+
n(n+ 1)

2

)
≡ 0 (mod 2c). (31)

Consider the algebraic integer

A = ε

(
m(m+ 1)

2
+
n(n+ 1)

2

)
.

It is clear that A 6= 0 for m > 0 or n > 0. So, (31) implies that |A| ≥ 2|c|. Hence,

m(m+ 1) ≥ 2|c| or n(n+ 1) ≥ 2|c|,

ie.
m ≥

√
2|c|+ 0.25− 0.5 or n ≥

√
2|c|+ 0.25− 0.5.

Finally, the previous proposition yields a lower bound for a nontrivial solution of equa-
tions (20) and (21).

Corollary 9 Let c /∈ Sc. If U ∈ ZM\{±ε} is a solution of the system of equations (20)
and (21), then

|U | ≥ (2|c| − 3)
√

2|c|+0.25−0.5.

Proof. If follows straight away from Lemma 6 and Proposition 8.

5.2 An upper bound for a solution

The number of solutions of simultaneous Pellian equations can be bounded by using a
theorem on simultaneous approximations by rationals to the square roots of rationals near
1 introduced by M. Bennett in [2]. In fact, we need its generalization for imaginary quadratic
fields stated and proved in [12]. Namely, we use the following theorem:

Theorem 10 ([12, Theorem 7.1]) Let θi =
√

1 + ai
T for 1 ≤ i ≤ m, with ai pairwise

distinct imaginary quadratic integers in K := Q(
√
−D) with 0 < D ∈ Z for i = 0, . . . ,m

and let T be an algebraic integer of K. Furthermore, let A := max |ai|, |T | > A and a0 = 0
and

l = cm
(m+1)m+1

mm · |T ||T |−A , L = |T |m (m+1)m+1

4mm
∏

0≤i<j≤m |aj−ai|2
·
(
|T |−A
|T |

)m
,

p =
√

2|T |+3A
2|T |−2A , P = |T | · 2m+3

∏
0≤i<j≤m |ai−aj |2

mini 6=j |ai−aj |m+1 · 2|T |+3A
2|T | ,
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where cm =
3Γ(m− 1

2)
4
√
πΓ(m+1)

, such that L > 1, then

max

(∣∣∣∣θ1 −
p1

q

∣∣∣∣ , . . . , ∣∣∣∣θm − pm
q

∣∣∣∣) > cq−λ

for all algebraic integers p1, . . . , pm, q ∈ K, where

λ = 1 +
logP

logL
and

C−1 = 2mpP (max {1, 2l})λ−1 .

The first step in the application of Theorem 10 consists of choosing suitable values for
θ1 and θ2. Let (U, V, Z) ∈ Z3

M be a solution of system of Pellian equations (20) and (21).
The candidates for θ1 and θ2 are

θ
(1)
1 = ±

√
c+ 2

c
, θ

(1)
2 = ±

√
c− 2

c
, θ

(2)
1 = −θ(1)

1 , θ
(2)
2 = −θ(1)

2 , (32)

where the signs are chosen such that

|V − θ(1)
1 U | < |V − θ(2)

1 U | and |Z − θ(1)
2 U | < |V − θ(2)

2 U |.

The next lemma shows that V
U and Z

U are good approximations to the algebraic numbers

θ
(1)
1 and θ

(1)
2 .

Lemma 11 Let |c| > 2. If (U, V, Z) ∈ Z3
M is a solution of (20) and (21), then

max

{∣∣∣∣θ(1)
1 −

V

U

∣∣∣∣ , ∣∣∣∣θ(1)
2 −

Z

U

∣∣∣∣} ≤ 2√
|c|(|c| − 2)

|U |−2.

Proof. We have

|V − θ(2)
1 U | ≥ 1

2
(|V − θ(1)

1 U |+ |V − θ(2)
1 U |)

≥ 1

2
|U ||θ(1)

1 − θ
(2)
1 | = |U |

∣∣∣∣∣
√
c+ 2

c

∣∣∣∣∣ ≥ |U |
√
|c| − 2

|c|
,

This implies∣∣∣∣θ(1)
1 −

V

U

∣∣∣∣ =

∣∣∣∣c+ 2

c
− V 2

U2

∣∣∣∣ ∣∣∣∣θ(2)
1 −

V

U

∣∣∣∣−1

≤ 2

|c||U |2

√
|c|
|c| − 2

=
2√

|c|(|c| − 2)
|U |−2.

Inequality ∣∣∣∣θ(1)
2 −

Z

U

∣∣∣∣ ≤ 2√
|c|(|c| − 2)

|U |−2

is proved in [12, Lemma 8.1].
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The inputs of Theorem 10 are m = 2, θ1 = θ
(1)
1 , θ2 = θ

(1)
2 , a1 = 2, a2 = −2, A = 2,

T = c, with |T | = |c| > 2,

l =
27

64

|c|
|c| − 2

, L =
27

4096
(|c| − 2)2 > 1 if |c| ≥ 15,

p =

√
|c|+ 3

|c| − 2
, P = 1024(|c|+ 3),

λ = 1 +
log 1024 + log(|c|+ 3)

log 27− log 4096 + 2 log(|c| − 2)
,

C−1 = 4pP (max{1, 27

32

|c|
|c| − 2

})λ−1 = 4pP = 4096(|c|+ 3)

√
|c|+ 3

|c| − 2
if |c| ≥ 13.

Finally, Lemma 11 and Theorem 10 for p1 = V , p2 = Z and q = U give us the following
inequality

2

|U |2
√
|c|(|c| − 2)

≥ max

{∣∣∣∣θ1 −
V

U

∣∣∣∣ , ∣∣∣∣θ2 −
Z

U

∣∣∣∣} > C|U |−λ,

ie.
2C−1√
|c|(|c| − 2)

> |U |2−λ.

So, if 2− λ > 0, then the obtained upper bound for |U | is

log |U | <
log( 2C−1√

|c|(|c|−2)
)

2− λ
. (33)

We now examine the condition f(|c|) = 2− λ > 0, where

f(t) = 1− log 1024 + log(t+ 3)

log 27− log 4096 + 2 log(t− 2)
, t > 2.

For t > 15, f(t) is a strictly growing function and since limt→∞ f(t) = 1
2 , there exists t0

such that f(t) > 0 for t ≥ t0. Since, f(155 352) > 0 and f(155 351) < 0, we conclude that
the condition 2 − λ > 0 is fulfilled for |c| ≥ 155 352. Now, we use the lower bound for |U |
given in Corollary 9 and obtain

log |U | ≥ (
√

2|c|+ 0.25− 0.5) log(2|c| − 3), |c| > 2. (34)

Comparing (33) and (34) we get the inequality

(
√

2|c|+ 0.25− 0.5) log(2|c| − 3) <
log(8192 · (|c|+3)√

|c|(|c|−2)

√
|c|+3
|c|−2)

1− log 1024(|c|+3)

log 27
4096

(|c|−2)2

,

which does not hold for |c| ≥ 159 108. Therefore, we have proved the following assertion.
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Proposition 12 For |c| ≥ 159 108, the only solutions of the system (20) and (21) are
(U, V, Z) = (±ε,±ε,±ε) with mix signs and ε = 1, i, ω, ω2 corresponding to µ = 1,−1, ω,
ω2, respectively.

Let (p, q) ∈ Z2
M be a solution of (19) and let |c| ≥ 159 108. From Proposition 12 and

equations in (22), we have

U = p2 + q2 = ±ε, V = p2 + 2pq − q2 = ±ε, Z = −p2 + 2pq + q2 = ±ε,

where ε = 1, i, ω, ω2. Adding V and Z yields 2pq = 0,±ε. Since |2pq| ≥ 2 or |2pq| = 0, we
have 2pq = 0. Hence, either p or q is equal to 0 which implies p4 = µ and q = 0 or q4 = µ
and p = 0, where µ ∈ {1,−1, ω, ω2}. Therefore the following theorem follows immediately.

Theorem 13 Let c /∈ Sc. If the equation (19) is solvable in (p, q) ∈ Z2
M , then µ ∈

{1,−1, ω, ω2} where ω = 1
2(−1 +

√
−3). Furthermore, if |c| ≥ 159 108, then all solutions of

(19) are given by

1. (p, q) ∈ {(0,±1), (±1, 0), (0,±i), (±i, 0)} ∩ Z2
M if µ = 1;

2. (p, q) ∈ {(0,±ω), (±ω, 0)} ∩ Z2
M if µ = ω;

3. (p, q) ∈ {(0,±ω2), (±ω2, 0)} ∩ Z2
M if µ = ω2.

Note, that if µ = −1 and |c| ≥ 159 108, then there is no solution of (19). Equations in (18)
and Theorem 13 imply the following proposition right away.

Proposition 14 If |c| ≥ 159 108, then all non-equivalent generators of power integral basis
of O =ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.

Remark 15 Note that (U, V, Z) = (±ε,±ε,±ε) with mix signs and ε = 1, i, ω, ω2 corre-
sponding to µ = 1,−1, ω, ω2, respectively, are solutions of the system (20) and (21) for all
c ∈ ZM . This implies that α = ξ, 2ξ − 2cξ2 + ξ3 are non-equivalent generators of power
integral basis for all c ∈ ZM\ {0,±2} .

6 Applying Baker’s theory for |c| < 159 108

The famous theorem of Baker and Wüstholz from [1] says:

Theorem 16 If Λ = b1α1 + · · · + blαl 6= 0, where α1, . . . , αl are algebraic numbers and
b1, . . . , bl are rational integers, then

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h(α1) · · ·h(αl) log(2ld) logB,

where B = max{|(b1|, . . . , |bl|}, d is the degree of the number field generated by α1, . . . , αl
over the rationals Q,

h′(α) = max{h(α),
1

d
| logα|, 1

d
},

and h(α) denotes the standard logarithmic Weil height.
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The previous theorem can be applied on finding intersections of binary recursive se-
quences close to sequences of the form αβm, where α, β are algebraic integers. So, first we
make sure that our sequences um and u′n are close to that form.

Assume that |c| < 159 108, c /∈ Sc and Re(c) ≥ 0. Indeed, if Re(c) < 0, then by replacing
c in the system of equations (20), (21) by −c, we obtain the system

(c− 2)U2 − cV 2 = −2µ, cZ2 − (c+ 2)U2 = −2µ,

which corresponds to the initial system (20), (21) by switching places of Z and V . Let us
agree that the square root of a complex number z = reiϕ, −π < ϕ ≤ π is given by

√
z =
√
rei

ϕ
2 ,

ie. the one with a positive real part (or the principal square root).
Let (U, V, Z) be solution of the system (20) and (21). In Section 4 we showed that than

there exists m ≥ 0 such that U = ±um, where the sequence (um) is given by (26). Solving
the recursion in (26) yields an explicit expression for um:

um = ε
1

2
√
c(c+ 2)

(
(c+

√
c(c+ 2))(c+ 1 +

√
c(c+ 2))m

−(c−
√
c(c+ 2))(c+ 1−

√
c(c+ 2))m

)
. (35)

Since Re(c) ≥ 0, |c+1+
√
c(c+ 2)| · |c+1−

√
c(c+ 2)| = 1 and |c+1+

√
c(c+ 2)| 6= |c+1−√

c(c+ 2)| for c 6= 0,−1,−2, we have |c+ 1 +
√
c(c+ 2)| > 1 (and |c+ 1−

√
c(c+ 2)| < 1).

So, we put

P =
1√
c+ 2

(c+
√
c(c+ 2))(c+ 1 +

√
c(c+ 2))m. (36)

Through algebraic manipulation it can be shown

um =
ε

2
√
c
(P +

2c

c+ 1
P−1), (37)

since
√
c(c+ 2) =

√
c
√

(c+ 2) if Re(c) ≥ 0 (because
√
z1z2 =

√
z1
√
z2 is not true in

general) and

P−1 =

√
c+ 2

2c
(
√
c(c+ 2)− c)(c+ 1−

√
c(c+ 2))m.

Analogously, there exists n ≥ 0 such that U = ±u′n, where the sequence (u′n) is given by
(27) and it’s explicit expression is

u′n = ε
1

2
√
c(c− 2)

(
(c+

√
c(c− 2))(c− 1 +

√
c(c− 2))n

−(c−
√
c(c− 2))(c− 1−

√
c(c− 2))n

)
. (38)

Also, since |c− 1 +
√
c(c− 2)| 6= |c− 1−

√
c(c− 2)| for c 6= 0, 1, 2 and |c− 1 +

√
c(c− 2)| ·

|c− 1−
√
c(c− 2)| = 1, we put

Q =
1√
c− 2

(c+
√
c(c− 2))(c− 1 +

√
c(c− 2))n, (39)
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if |c−1+
√
c(c− 2)| > 1. Alternatively, if |c−1+

√
c(c− 2)| < 1, ie. |c−1−

√
c(c− 2)| > 1,

we put

Q =
1√
c− 2

(c−
√
c(c− 2))(c− 1−

√
c(c− 2))n. (40)

To be more precise, if Re(c) > 1 or Re(c) = 1 and Im(c) > 0, then Q is given by (39)
and also

√
c(c− 2) =

√
c
√
c− 2. In the other hand, if 0 ≤ Re(c) < 1 or Re(c) = 1 and

Im(c) < 0, then
√
c(c− 2) = −

√
c
√
c− 2 and Q is defined by (40). Note that, in both

cases, Q can be given by

Q =
1√
c− 2

(c+
√
c
√
c− 2)(c− 1 +

√
c
√
c− 2)n. (41)

Similarly to the previous case, we have

u′n = ± ε

2
√
c
(Q− 2c

c− 2
Q−1), (42)

where

Q−1 =

√
c− 2

2c
(c−

√
c
√
c− 2)(c− 1−

√
c
√
c− 2)n.

The theorem of Baker and Wüstholz (Theorem 16) will be applied on the form

Λ = log
|Q|
|P |

.

6.1 Estimates on |Λ|

First, we have to estimate the lower bounds for |P | and |Q|. Since |c| 6= 1, then |c| ≥
√

2
and

|P | ≥ 11.6, (43)

for m ≥ 2. Indeed, the inequality (43) follows from the fact that∣∣∣∣∣c+
√
c(c+ 2)√
c+ 2

∣∣∣∣∣ =
∣∣√c∣∣ ∣∣∣∣ √c√

c+ 2
+ 1

∣∣∣∣ ≥ 1 · 1 = 1,

since |
√
c| =

√
|c| ≥ 1, Re

( √
c√
c+2

)
≥ 0 and

∣∣∣c+ 1 +
√
c(c+ 2)

∣∣∣2 ≥ (|c|+ 2)2 ≥ (
√

2 + 2)2 ≥ 11.6.

Similarly, if |c| ≥
√

2 and n ≥ 2, then (41) implies

|Q| ≥
∣∣√c∣∣ ∣∣∣∣ √c√

c− 2
+ 1

∣∣∣∣ ∣∣c− 1 +
√
c
√
c− 2

∣∣2 ≥ (√2 + 1
)2

> 5.8. (44)

In the case |c| ≥ 2, (43) and (44) can be immediately improved to

|P | ≥ 16, |Q| ≥ 9.
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Since there are finitely many integers c such that
√

2 ≤ |c| < 2, we can easily obtain lower
bounds for |P | and |Q| assuming |c| ≥

√
2. Indeed,

|P | ≥ min{16,min{Pc : c ∈ T}}, |Q| ≥ min{9,min{Qc : c ∈ T}}

where

Pc =

∣∣∣∣√ c

c+ 2

∣∣∣∣ ∣∣√c+
√
c+ 2

∣∣ ∣∣∣c+ 1 +
√
c(c+ 2)

∣∣∣2 ,
Qc =

∣∣∣∣√ c

c− 2

∣∣∣∣ ∣∣√c±√c− 2
∣∣ ∣∣c− 1 +

√
c
√
c− 2

∣∣2 ,
and

T = {±
√
−2,

1±
√
−7

2
,±
√
−3,

3±
√
−3

2
,
1±
√
−11

2
}, (45)

ie. T is the set of all integers in Q(
√
−D) such that

√
2 ≤ |c| < 2, c 6∈ Sc and Re(c) ≥ 0.

Finally, we get
|P | ≥ 16, |Q| ≥ 9,

for |c| ≥
√

2 and n,m ≥ 2 (because min{Pc : c ∈ T} ≥ 16 and min{Qc : c ∈ T} ≥ 9).

Using these bounds, we have to show that the value of
∣∣∣log |Q||P |

∣∣∣ is small enough. Assuming

that
um = ±u′n, m ≥ 2, n ≥ 2,

relations (37) and (42) imply

P ±Q = ± 2c

c− 2
Q−1 +

2c

c+ 2
P−1. (46)

So,

||P | − |Q|| ≤ |P ∓Q| ≤
∣∣∣∣ 2c

c− 2

∣∣∣∣ |Q|−1 +

∣∣∣∣ 2c

c+ 2

∣∣∣∣ |P |−1 (47)

< 2 · 5 · 1

9
+ 2 · 1 · 1

16
= 1.24.

(Note that
∣∣∣ c
c−2

∣∣∣ ≤ 5 for c ∈ ZM , c 6= 2, Re(c) ≥ 0, and
∣∣∣ c
c+2

∣∣∣ ≤ 1 for c ∈ ZM and

Re(c) ≥ 0.) Since,
||P | − |Q||
|P |

< 1.24|P |−1 < 1,

we have ∣∣∣∣log
|Q|
|P |

∣∣∣∣ = log

∣∣∣∣1− |P | − |Q||P |

∣∣∣∣ ≤ ||P | − |Q|||P |
+

(
||P | − |Q||
|P |

)2

.

Also, the inequality ||P | − |Q|| < 1.24 implies that

|P | < |Q|+ 1.24 ≤ |Q|+ 1.24
|Q|
9

< 1.14|Q|,

or equivalently
|Q|−1 < 1.14|P |−1.
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By putting that into (47), we get

||P | − |Q|| <
∣∣∣∣ 2c

c− 2

∣∣∣∣ · 1.14|P |−1 +

∣∣∣∣ 2c

c+ 2

∣∣∣∣ |P |−1 < 13.4|P |−1.

Finally,∣∣∣∣log
|Q|
|P |

∣∣∣∣ < 13.4|P |−2 + (13.4|P |−2)2 ≤ (13.4 + (13.4
1

16
)2)|P |−2 < 14.11|P |−2.

Furthermore, it can be shown that

|Λ| =
∣∣∣∣log
|Q|
|P |

∣∣∣∣ < 14.11|P |−2 < 14.11 ·
(√

2 + 2
)−2m

< 3−m,

for |c| ≥
√

2 and m,n ≥ 2. Similarly we find

||P | − |Q||
|Q|

< 1.24|Q|−1 < 1

and

|Λ| =

∣∣∣∣log
|P |
|Q|

∣∣∣∣ = log

∣∣∣∣1− |P | − |Q||Q|

∣∣∣∣ ≤ ||P | − |Q|||Q|
+

(
||P | − |Q||
|Q|

)2

< 14|Q|−2 < 14 ·
(√

2 + 1
)−2n

< (1.55)−n .

It remains to show that there are no solutions of um = ±u′n in cases when m = 1 or
n = 1. For c ∈ ZM , |c| ≥

√
2 and Re(c) ≥ 0, we have

|u1| = |2c+ 1| ≤ 2|c|+ 1, |u′1| = |2c− 1| ≤ 2|c|+ 1

and
|um| > (2

√
1 + |c|2 − 1)m, |u′n| > (2

√
1 + |c|2 − 1)n−1(2|c| − 1),

for m,n ≥ 2 (where last inequalities are obtained similarly to those in Lemma 6). Since,

|u1| ≤ 2|c|+ 1 < (2
√

1 + |c|2 − 1)(2|c| − 1) ≤ |u′n|, if n ≥ 2

|u′1| ≤ 2|c|+ 1 < (2
√

1 + |c|2 − 1)2 ≤ |um|, if m ≥ 2

we conclude that the equations u1 = ±u′n and u′1 = ±um have no solution for m,n ≥ 2, i.e.
for m,n ≥ 1 (because u1 6= ±u′1).

6.2 The condition Λ 6= 0

Without proving that Λ 6= 0, i.e. |P | 6= |Q|, we cannot apply Theorem 16. This proof is
rather complicated and involves several cases.

First, we show that P 6= ±Q. Let us assume that P = ±Q. According to (46), the
following possibilities may occur:

c

c2 − 4
= 0,
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which is obviously not possible (c 6= 0,±2), and

P 2 =
2c

c2 − 4
.

In Section 6.1, we have shown that |P |2 ≥ 162. Since∣∣∣∣ 2c

c2 − 4

∣∣∣∣ ≤ 2|c|
||c|2 − 4|

≤ 2 ·
√

5

5− 4
< 5,

for |c| ≥
√

5 and ∣∣∣∣ 2c

c2 − 4

∣∣∣∣ ≤ max{
∣∣∣∣ 2c

c2 − 4

∣∣∣∣ : c ∈ T1} < 1, c ∈ T1,

where T1 = {c ∈ ZM\Sc :
√

2 ≤ |c| <
√

5}, ie.

T1 = T ∪
{
±2
√
−1,

3±
√
−7

2
,
1±
√
−15

2

}
and T is given in (45), we obtain a contradiction.

Before presenting other cases, let us take a closer look at |P | and |Q| from an algebraic
point of view. According to (36), we have

P√
c

=
c+

√
c(c+ 2)√

c(c+ 2)
(c+ 1 +

√
c(c+ 2))m = a+ bα = a+

b1
c+ 2

α, (48)

where α =
√
c(c+ 2) and a, b1 ∈ ZM . Similarly, (39) and (40) imply that

Q√
c

= d+ eβ = d+
e1

c− 2
β, (49)

where β =
√
c(c− 2) and d, e1 ∈ ZM . It follows straight away that

um =
ε

2
(a+ bα+ a− bα) = εa,

u′n =
ε

2
(d+ eβ + d− eβ) = εd,

where we have used the explicit expressions (35) and (38) for um and u′n . Since um = ±u′n,
we get

a = ±d.

Note that a 6= 0, d 6= 0, because |um|, |u′n| > 0 for m,n ≥ 2. We have∣∣∣∣ P√c
∣∣∣∣2 = (a+ bα)(a+ bα) = |a|2 + (ab)α+ (ab)α+ |b|2|α|2

and analogously∣∣∣∣ Q√c
∣∣∣∣2 = (d+ eα)(d+ eβ) = |d|2 + (de)β + (de)β + |e|2|β|2.
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If the algebraic extension Q(
√
−D)(α, α, β, β) is considered as a vector space over Q(

√
−D),

then {1, α, α, |α|2, β, β, |β|2} is its generating set and
∣∣∣ P√c ∣∣∣2 and

∣∣∣ Q√c ∣∣∣2 are the elements of the

vector subspaces span(1, α, α, |α|2) and span(1, β, β, |β|2), respectively. Before continuing
with the proof, we establish the following useful claims:

Lemma 17 If c 6∈ {0,±1,±2}, then α, β 6∈ Q(
√
−D).

Proof. Indeed, we can show that α ∈ Q(
√
−D) if and only if c = 0,−1,−2. Let α ∈

Q(
√
−D). Note that α ∈ Q(

√
−D) if and only if c(c+ 2) = t2 for some t ∈ ZM . Therefore,

c = −1±
√
t2 + 1, where t2 + 1 = s2 for some s ∈ ZM . Note that t, s, c ∈ ZM and t± s are

units in ZM . It is easy to check that only possibilities are c = 0,−1,−2. It can be proved
similarly that β ∈ Q(

√
−D) if and only if c = 0, 1, 2.

Lemma 18 If B1 is a basis of the subspace span(1, α, α, |α|2), then B1 = {1, α, α, |α|2}
or B1 = {1, α}. Set {1, α} is a basis of span(1, α, α, |α|2) if and only if α = Kα, K ∈
Q(
√
−D). The analogous statement is true for a basis of span(1, β, β, |β|2).

Proof. According to Lemma 17, it is obvious that {1, α} is a linearly independent set. Let
α = A + Cα, for A,C ∈ Q(

√
−D). By squaring it, we obtain 2ACα = α2 − A2 − α2C2 ∈

Q(
√
−D). Since α 6∈ Q(

√
−D), we have that AC = 0. If C = 0, then α = A ∈ Q(

√
−D), a

contradiction. If A = 0, then α = Cα and |α|2 = Cα2 ∈ Q(
√
−D) which imply B1 = {1, α}.

If {1, α, α} is a linearly independent set and |α|2 = A+Cα+Eα for A,C,E ∈ Q(
√
−D),

then by squaring it we get

|α|4︸︷︷︸
∈Q(
√
−D)

= A2 + C2α2 + E2α2︸ ︷︷ ︸
∈Q(
√
−D)

+2ACα+ 2AEα+ 2CE (A+ Cα+ Eα)︸ ︷︷ ︸
|α|2

,

a linear combination of 1, α, α. So, C(A + E) = 0 and E(A + C) = 0. If A = C = 0,
then |α|2 = Eα implies α ∈ Q(

√
−D), a contradiction. Also, other two cases end with a

contradiction ( A = E = 0 implies α ∈ Q(
√
−D) and C = E = 0 implies that {α, α} is a

linearly dependent set).

Lemma 19 Let c 6∈ {0,±1,±2}. If β ∈ span(1, α, α, |α|2), then B1 = {1, α, α, |α|2} is a
basis of the subspace span(1, α, α, |α|2) and β = Kα or β = K |α|2, for some K ∈ Q(

√
−D).

The analogous statement is true if α ∈ span(1, β, β, |β|2).

Proof. Let β ∈ span(1, α, α, |α|2). Obviously, this implies β, |β|2 ∈ span(1, α, α, |α|2),

too. If we assume that β = Kα for some K ∈ Q(
√
−D), then K = ±

√
c2−4
c−2 . Therefore,

c2 − 4 = r2 for some r ∈ ZM . Since c, r ∈ ZM and |c± r| ≤ 4, by checking all possibilities,
we find c = 0,±1,−2. (Similarly, if β = Kα for K ∈ Q(

√
−D), then c = 0,±1, 2).

If B1 = {1, α} is basis of subspace span(1, α, α, |α|2), then β = L + Kα some L,K ∈
Q(
√
−D). Then, by squaring it, it is easy to see β = L ∈ Q(

√
−D) or β = Kα, which is

impossible.
If B1 = {1, α, α, |α|2} is basis of subspace span(1, α, α, |α|2), then β = L+Kα+K ′α+

K ′′ |α|2 for some L,K,K ′,K ′′ ∈ Q(
√
−D). Similarly as before, we obtain β = L ∈ Q(

√
−D)
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or β = Kα or β = K ′α or β = K ′′ |α|2 . Therefore, we might have β = K ′α or β = K ′′ |α|2,
since first two cases are impossible.

Furthermore, ∣∣∣∣ P√c
∣∣∣∣2 − ∣∣∣∣ Q√c

∣∣∣∣2 ∈ V = span(1, α, α, |α|2, β, β, |β|2).

There are several possibilities for choosing a basis B for V from its generating set
{1, α, α, |α|2, β, β, |β|2}:

(a) B = {1}. This happens if and only if α, β ∈ Q(
√
−D). So, this is not possible according

to Lemma 17.

(b) B = {1, α} (or B = {1, β}). This is also not possible. Indeed, in this case B1 = {1, α}
is basis of subspace span(1, α, α, |α|2) and β ∈ span(1, α, α, |α|2), which contradicts
Lemma 19.

(c) B = {1, α, α, |α|2} (or B = {1, β, β, |β|2}). In this case B1 = {1, α, α, |α|2} is basis of
subspace span(1, α, α, |α|2) and β ∈ span(1, α, α, |α|2). This case implies that β = Kα
or β = K|α|2 for K ∈ Q(

√
−D) according to Lemma 19.

(d) B = {1, α, β}. This implies that α = Kα and β = Lβ, for K,L ∈ Q(
√
−D) according

to Lemma 18.

(e) B = {1, α, β, β, |β|2} (or B = {1, α, α, |α|2, β}). Here, we have α = Kα for K ∈
Q(
√
−D) (or β = Kβ for K ∈ Q(

√
−D))

(f) B = {1, α, α, |α|2, β, β, |β|2}.

In what follows, we show that |P | 6= |Q| in each of possible cases (c) to (f) unless
Re(c) = 0. Assume that |P | = |Q|, ie.

0 =

∣∣∣∣ P√c
∣∣∣∣2 − ∣∣∣∣ Q√c

∣∣∣∣2 = (ab)α+ (ab)α+ |b|2|α|2 − (de)β − (de)β − |e|2|β|2. (50)

Case (f): LetB = {1, α, α, |α|2, β, β, |β|2} basisB for V. Since the set {α, α, |α|2, β, β, |β|2}
is linearly independent, all coefficients have to be zero:

ab = ab = |b|2 = de = de = |e|2 = 0.

This implies b = e = 0 and
P = a

√
c = ±d

√
c = ±Q,

which is not possible.
Case (e): The assumption is that the set B = {1, α, β, β, |β|2} form a basis for V . In

this case we know that α = Kα and |α|2 = Kα2 for K ∈ Q(
√
−D). Obviously, K 6= 0. So,

(50) imply
(|b|2Kα2)1 + (ab+ abK)α− (de)β − (de)β − |e|2|β|2 = 0.
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The coefficients must be zero:

|b|2Kα2︸︷︷︸
6=0

= ab+ abK = de = de = |e|2 = 0.

Hence, b = e = 0 and
P = a

√
c = ±d

√
c = ±Q,

which is not possible. Similarly, we obtain a contradiction, if we assumeB = {1, α, α, |α|2, β}
is a basis for V.

Case (d): The set B = {1, α, β} form a basis for V . This is a situation when

α = Kα, |α|2 = Kα2, β = Lβ, |β|2 = Lβ2,

for K,L ∈ Q(
√
−D) and K,L 6= 0. Furthermore, K,L are units in Q(

√
−D), ie. |K| =

|L| = 1. Implementing that into (50) we get

(|b|2Kα2 − |e|2Lβ2)1 + (ab+ abK)α− (de+ deL)β = 0,

and
|b|2Kα2 = |e|2Lβ2, ab = −abK, de = −deL.

Assume that b, e 6= 0. Since a, d 6= 0, substituting

K = −ab
ab
, L = −de

de
,

we get

|b|2ab
ab
α2 = |e|2de

de
β2 ⇔

(
ab

|a|

)2

α2 =

(
de

|d|

)2

β2.

Also since, a = ±d, we have
b2α2 = e2β2.

So,
(bα− eβ)(bα+ eβ) = 0

and this leads to b = e = 0, because α, β are linearly independent, which gives again
P = ±Q. A contradiction!

Case (c): Recall that {1, α, α, |α|2} forms a basis of V and β = Kα or β = K|α|2 for
K ∈ Q(

√
−D).

If β = K|α|2, then β = K|α|2 and |β|2 = |K|2|α|4 ∈ Q(
√
−D). So, (50) implies that

(−|e|2|K|2|α|4) · 1 + (ab)α+ (ab)α+ (|b|2 − deK − deK)|α|2 = 0.

Therefore,
|e|2|K|2|α|4 = 0, ab = 0, |b|2 − deK − deK = 0.

Evidently e = b = 0 which imply P = ±Q, a contradiction.
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If β = Kα, then β = Kα and |β|2 = |K|2|α|2. Notice that β 6= Lβ for all L ∈ Q(
√
−D).

(If β = Lβ, then β = L−1Kα, which is not possible by Lemma 19.) According to (50) we
have

(ab− deK)α+ (ab− deK)α+ (|b|2 − |e|2|K|2)|α|2 = 0,

and
ab− deK = 0, |b|2 − |e|2|K|2 = 0.

Therefore,

K =
ab

de
= ±ab

ae
. (51)

From (48) and (49) we obtain

a2 − b2c (c+ 2) =
2

c+ 2
, a2 − e2c (c− 2) = − 2

c− 2
(52)

and
cb21 − (c+ 2) a2 = −2, (c− 2) a2 − ce2

1 = −2, (53)

which again implies

e2c (c− 2)− b2c (c+ 2) =
4c

c2 − 4
and (c+ 2) e2

1 − (c− 2) b21 = 4. (54)

Equation (51) implies |eβ| = |bα| , which again implies
∣∣e2

1 (c+ 2)
∣∣ =

∣∣b21 (c− 2)
∣∣ . Let

X = (c+ 2) e2
1 and Y = (c− 2) b21.

Therefore, we have X −Y = 4 and |X| = |Y | , which implies ReX = 2, ReY = −2. On the
other hand, from (51) and (54) we obtain

c2 − 4

c · a2

(
b
2
a2α2 − a2b2α2

)
= 4. (55)

Since b
2
a2α2 − a2b2α2 = 2 Im

(
abα

)2
i, equation (55) implies

Re

(
c2 − 4

ca2

)
= 0. (56)

The condition (56) is equivalent to the condition Re

(
(c2−4)a2

c

)
= 0. On the other hand,

from (53) and Re
(
(c+ 2) e2

1

)
= 2, we obtain

Re

((
c2 − 4

)
a2

c

)
= Re

(
(c+ 2)

(
ce2

1 − 2
)

c

)

= Re

(
−2− 4

c
+ e2

1 (c+ 2)

)
= −Re

(
4

c

)
= 0,

which again implies Re c = 0, ie. c = vi, v ∈ Z
(√

D
)
, v 6= 0,±1. In general we have

√
z =

√
z, if z ∈ C\R− and

√
z = −

√
z, if z ∈ R−. Since, we have β =

√
vi (vi− 2),
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α =
√
vi (vi+ 2) and (vi− 2) vi = vi (vi+ 2) /∈ R−, then β = α ie. K = 1. Also, from

(56) we obtain that Re
(
−iv
v2+4

(a)2
)

= 0, which again implies a = −a or a = a. Therefore,

since K = 1, from (51) we have e = ±b and distinguish four cases:

1. If a = a = d, then e = ab
d

= b and P√
c

= a+ bα, Q√
c

= a+ bα;

2. a = −a, a = d, then e = ab
d

= −b and P√
c

= a+ bα, Q√
c

= a− bα;

3. a = a, a = −d, then e = ab
d

= −b and P√
c

= a+ bα, Q√
c

= −a− bα;

4. a = −a, a = −d, then e = ab
d

= b and P√
c

= a+ bα, Q√
c

= −a+ bα.

Note that each of the above cases implies that |P | = |Q| and therefore Λ = 0. In what
follows we show that in this particular case the equation um = ±u′n, m,n > 0, has no
solution.

First we will show that a = ±a imply bα 6= ±bα. It is enough to show Im (bα)2 6= 0.
Suppose Im (bα)2 = 0. Then, from (52) we have

(bα)2 = b2c (c+ 2) = a2 − 2

vi+ 2
.

Since, we have Im (bα)2 = Im a2 = 0, then Im 2
vi+2 = 0 which again implies v = 0, a

contradiction.
From (46) we obtain

P√
c
− Q√

c
= − 2

(c− 2)
·
√
c

Q
+

2

(c+ 2)
·
√
c

P
, if a = d, (57)

P√
c

+
Q√
c

=
2

(c− 2)
·
√
c

Q
+

2

(c+ 2)
·
√
c

P
, if a = −d. (58)

If a = a = d, then (57) imply

bα− bα =
2

2− vi
· 1

a+ bα
+

2

2 + vi
· 1

a+ bα
.

Since Re
(
bα− bα

)
= 0 and Im

(
2

2−vi ·
1

a+bα
+ 2

2+vi ·
1

a+bα

)
= 0, we obtain bα = bα, a

contradiction. Similarly, we obtain contradiction in other three cases. Analogous results
are obtained if B = {1, β, β, |β|2} is a basis for V.

Note that if c = vi, v ∈ Z[
√
D], v 6= 0,±1, then β = α and, according to Lemma 19,

{1, α, α, |α|2} forms a basis of V = Q(
√
−D)(α, α, β, β), that is Case (c). Therefore we have

proved the following assertion.

Proposition 20 Let c /∈ Sc and Λ = log |P ||Q| . Then

i) Λ 6= 0 if and only if Re(c) 6= 0.

ii) If Re(c) = 0, then the equation um = ±u′n has no solution for m,n > 0.

Corollary 21 If c 6= ±
√
−1 and Re(c) = 0, then all non-equivalent generators of power

integral basis of O = ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.
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6.3 A reduction procedure

We are now ready to apply Theorem 16 to our linear form in logarithms of algebraic numbers

Λ = log |Q| − log |P | = n log η −m log ϑ+ log ξ,

where

η = |c− 1 +
√
c
√
c− 2|, ϑ = |c+ 1 +

√
c(c+ 2)|, ξ =

∣∣∣∣√c+ 2(
√
c+
√
c− 2)√

c− 2(
√
c+
√
c+ 2)

∣∣∣∣ .
First we have to calculate the standard logarithmic Weil height of η, ϑ and ξ. Since, the
standard logarithmic Weil height h(α) is bounded by

h(α) ≤ 1

k
log

(
a0

k∏
i=1

max{1, |α(i)|}

)
,

where the algebraic number α is a root of a0
∏k
i=1(x−α(i)). Note that η, ϑ and ξ are roots

of the following polynomials

p1(x) = 1− 4(1− c− 4c+ cc)x2 + (6− 8c+ 4c2 − 8c+ 4c2)x4 − 4(1− c− 4c+ cc)x6 + x8,

p2(x) = 1− 4(1 + c+ c+ cc)x2 + (6 + 8c+ 4c2 + 8c+ 4c2)x4 − 4(1 + c+ c+ cc)x6 + x8,

p3(x) = (−2+c)8(−2+c8)

(2+c)8(2+c)8
− 4

(−2+c)8(−2+c8)

(2+c)7(2+c)7
x2 − 24

(−2+c)7(−2+c7(−5+c2+c2)

(2+c)7(2+c)7
x4

+4
(−2+c)7(−2+c)7(−35+4c2+4c2)

(2+c)6(2+c)6
x6 + 4

(−2+c)6(−2+c)6(455−116c2+4c4−116c2+44c2c2+4c4)

(2+c)6(2+c)6
x8

−4
(−2+c)6(−2+c)6(273−36c2−36c2+16c2c2)

(2+c)5(2+c)5
x10

−8
(−2+c)5(−2+c)5(−1001+253c2−8c4+253c2−72c2c2+8c4c2−8c4+8c2c4)

(2+c)5(2+c)5
x12

+4
(−2+c)5(−2+c)5(−715+88c2+88c2+16c2c2)

(2+c)4(2+c)4
x14

2
(−2+c)4(−2+c)4(6435−1584c2+48c4−1584c2+16c2c2+64c4c2+48c4+64c2c4)

(2+c)4(2+c)4
x16

+4
(−2+c)4(−2+c)4(−715+88c2+88c2+16c2c2)

(2+c)3(2+c)3
x18

−8
(−2+c)3(−2+c)3(−1001+253c2−8c4+253c2−72c2c2+8c4c2−8c4+8c2c4)

(2+c)3(2+c)3
x20

−4
(−2+c)3(−2+c)3(273−36c2−36c2+16c2c2)

(2+c)2(2+c)2
x22 + 4

(−2+c)2(−2+c)2(455−116c2+4c4−116c2+44c2c2+4c4)

(2+c)2(2+c)2
x24

+4
(−2+c)2(−2+c)2(−35+4c2+4c2)

(2+c)(2+c)
x26 − 24

(−2+c)(−2+c)(−5+c2+c2)
(2+c)(2+c)

x28 − 4(−2 + c)(−2 + c)x30 + x32,

respectively.
Each conjugate of an algebraic number in absolute value can be bounded by |α′| ≤

max {1, k|a′|}, where |a′| = max {|a0|, . . . , |ak−1|} and a0, . . . , ak−1 are coefficients of the
related monic polynomial

∏k
i=1(x− α(i)). Hence,

h(α) ≤ log(max{1, k|a′|}).

It is easy to see, that each coefficient of the polynomials p1(x) and p2(x) can be bounded
(in the absolute value) by 6 + 16|c| + 8|c|2. All coefficients of p3(x) can be bounded by
(|c|+ 2)16(6435 + 3168|c|2 + 112|c|4 + 128|c|6) - a very rough bound. So,

h(η), h(ϑ) ≤ log(8(6 + 16|c|+ 8|c|2)) < 28.12,

h(ξ) ≤ log
(
32(|c|+ 2)16(6435 + 3168|c|2 + 112|c|4 + 128|c|6)

)
< 271.82,
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and obviously h′(η), h′(ϑ) and h′(ξ) are less than the values given above. Finally, since
d ≤ 32 · 8 · 8 we have

− log |Λ| ≤ 18 · 4! · 34(32 · 2048)528.122 · 271.82 · log(2 · 3 · 2048) log l < 8.6 · 1034 log l,

where l = max{m,n}. If l = m, applying |Λ| < 3−m to the previous inequality, we get

m

logm
< 7.8 · 1034

which does not hold for m ≥ 6.7 · 1036. Therefore, we solve

|Λ| = | log η|
∣∣∣∣n−m log ϑ

log η
+

log ξ

log η

∣∣∣∣ < 3−m, m < 6.7 · 1036,

ie.
|mθ − n+ γ| < δ · 3−m (59)

where θ = log ϑ
log η , γ = − log ξ

log η and δ = 1
| log η| .

If l = n, applying |Λ| < 1.55−n to the previous inequality, we get

n

log n
< 2 · 1035

which does not hold for n ≥ 1.715 · 1037. Therefore, we solve

|Λ| = | log ϑ|
∣∣∣∣m− n log η

log ϑ
+

log ξ

log ϑ

∣∣∣∣ < (1.55)−n , n < 1.715 · 1037

ie.
|nθ′ − n+ γ′| < δ′ · 1.55−n (60)

where θ′ = log η
log ϑ , γ′ = log ξ

log ϑ and δ′ = 1
| log ϑ| .

Now we will apply the reduction method similar to one described in [3].

Lemma 22 ([3, Lemma 4a]) Let M be a positive integer and let p/q be a convergent of
the continued fraction expansion of θ such that q > 6M . Furthermore, let ε = ‖γq‖−M‖θq‖,
where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then the inequality

|mθ − n+ γ| < δa−m

has no integer solutions m and n such that log(δq/ε)/ log a ≤ m ≤M .

Since our bound for the absolute value of c is very huge (almost 160 000), we perform
reductions only for |c| ≤ 1000, c ∈ ZM . We obtained that (59) and (60) has no integer
solutions for m ≥ n > 31 and n ≥ m > 67, respectively. The reason for not achieving
a better bound for m and n is because θ and θ′ are very close to 1 and hence their first
convergent is too large, although for certain values of c the reduction procedure is very effi-
cient. For an impression, c = 1 + 984

√
−1 with related θ′ ≈ 1.000000272 and q1 = 3 672 014

(the denominator of the first convergent) represents a non-efficient example of reduction
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(m ≤ n ≤ 67), while on c = 10 +
√
−61 with related θ ≈ 1.039 the reduction works much

better (n ≤ m ≤ 2). Finally, we showed that the equations um = ±u′n for 1 ≤ m,n ≤ 67
have no solutions in ZM except c = ±1,±2. (Note that according to (26) and (26), uk and
u′k are k-th degree polynomials in the variable c. So, solving um = ±u′n reduces to finding
roots of certain polynomials in ZM .)

Computational aspects. All reductions and calculations were performed in Wolfram’s
Mathematica 9.0 with 150-digit precision. Since the algorithm for |c| ≤ 200, |c| ≤ 400 and
|c| ≤ 1000 took respectively 1718s, 9757s and 99710s, we estimate that the time required
to do all computations for |c| < 159108 is more then 1010 sec.

Therefore, we have proved:

Proposition 23 If |c| ≤ 1000 and c 6∈ Sc, then all non-equivalent generators of power
integral basis of O =ZM [ξ] over ZM are α = ξ, 2ξ − 2cξ2 + ξ3.

7 On the case c ∈ Sc

So far, we have observed the case when the parameter c /∈ Sc, where the set Sc is given
by (3). Note that if c ∈ Sc, then on at least one of the equation of the system (20) and
(21) we can not apply Lemma 4. Indeed, in these cases, there are additional classes of
solutions of the equation (20) or (21), or there exists only finitely many solutions of those
equations. Also note, if (p, q) = (a, b) is a solution of the Thue equation (19) for c = c0,
then (p, q) = (b, a) is a solution of this equation for c = −c0. Therefore, it is enough to
observe only c’s from the set Sc with Re(c) ≥ 0. Furthermore, all c ∈ Sc are from only one
imaginary quadratic field except c = ±1 that belong to each field M = Q

(√
−D

)
. Thus,

for each c ∈ Sc, c 6= ±1, we have to find additional classes of solutions of the equation (20)
or (21) (see [5]) and repeat the entire procedure from previous sections. This situation is
much simpler because we have a specific value of c and each c is from exactly one field. On
the other hand, we need to find intersections of at least four recursive series.

For c = 1 Thue equation (19) have the form

p4 − 2p3q + 2p2q2 + 2pq3 + q4 = µ, (61)

and the related system is

V 2 − 3U2 = −2µ, U2 + Z2 = 2µ.

By Lemma 4, solutions of the first equation are (V,U) = (±vm,±um) , where sequences
(vm) and (um) are given by

v0 =ε, v1 =5ε, vm+2 = 4vm+1 − vm, m ≥ 0,

u0 =ε, u1 =3ε, um+2 = 4um+1 − um, m ≥ 0,

where ε = 1, i, ω, ω2 corresponds to µ = 1,−1, ω, ω2, respectively. Therefore, we have to
observe the equation

U2 + Z2 = 2µ, (62)

25



for µ ∈
{

1, ω, ω2
}
∩Q

(√
−D

)
, if D 6= 1 and µ ∈ {1,−1} if D = 1.

If D = 1, then −1 is a square in ZM , and the left side of (62) can be factorized as

U2 + Z2 = U2 − (−1)Z2 = (U − iZ) (U + iZ) = 2µ, µ = 1,−1.

This implies that the equation (62) has only finitely many solutions

(U,Z) = (±1,±1) , if µ = 1 and (U,Z) = (±i,±i) , if µ = −1,

which again implies that all solutions of system of relative Pellian equations are given by

(U, V, Z) = (±1,±1,±1) , if µ = 1

(U, V, Z) = (±i,±i,±i) , if µ = −1.

Hence, if µ = 1, then the solutions of the corresponding Thue equation are

(p, q) ∈ {(0,±1), (±1, 0), (0,±i), (±i, 0)}

and if µ = −1, then there are no solutions.
Note, that for c = 1 the corresponding Thue equation (61) can be transformed into

equation
X2 + 3Y 2 = µ (63)

by putting X = ±
(
p2 − pq − q2

)
and Y = ±pq. The equation (63) has infinitely many

solutions in all rings ZM , except in the ring of integers of the field Q
(√
−3
)

because −3 is
a square in that ring. In that case equation (63) can be factorized as

X2 + 3Y 2 =
(
X −

√
−3Y

) (
X +

√
−3Y

)
= µ,

where µ = 1, ω, ω2. This implies that the equation (63) has only finitely many solutions

(X,Y ) ∈
{

(±1, 0) , (±ω, 0) ,
(
±ω2, 0

)}
.

Since Y = ±pq = 0 for each solution from above, we conclude that all solutions Thue
equation (61) are

(p, q) ∈ {(0,±1), (±1, 0)}, if µ = 1,

(p, q) ∈ {(0,±ω), (±ω, 0)}, if µ = ω,

(p, q) ∈ {(0,±ω2), (±ω2, 0)}, if µ = ω2.

In the ring of integers ZM of the field M = Q
(√
−D

)
, where D 6= 1, 3 for c = 1, we have

to find all solutions of the equation

U2 + Z2 = 2. (64)

In this case the equation (64) has infinitely many solutions and the form of these solutions
depend on D.

Therefore, we have proved:

Proposition 24 Let M = Q
(√
−D

)
, where D = 1, 3. If c = 1 or c = −1, then non-

equivalent generators of power integral basis of O =ZM [ξ] over ZM are given by α = ξ,
2ξ − 2ξ2 + ξ3 or α = ξ, 2ξ + 2ξ2 + ξ3, respectively.
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8 On elements with the absolute index 1

Let Q ⊂M ⊂ K be number fields with m = [M : Q] and k = [K : M ]. Let O be either the
ring of integers ZK of K or an order of ZK . Denote DO and DM the discriminant of O and
subfield M , respectively. Also, denote by γ(i) the conjugates of any γ ∈ M (i = 1, . . . ,m).
Let δ(i,j) be the images of δ ∈ K under the automorphisms of K leaving the conjugate field
M (i) elementwise fixed (j = 1, . . . , k).

According to [11] for any primitive element α ∈ O we have

IO(α) =
[
O+ : Z[α]+

]
=
[
O+ : ZM [α]+

]
·
[
ZM [α]+ : Z[α]+

]
. (65)

The first factor we call the relative index of α and we have

IO/M (α) =
[
O+ : ZM [α]+

]
=

=
1√

|NM/Q(DO/M )|
·
m∏
i=1

∏
1≤j1<j2≤k

∣∣∣α(i,j1) − α(i,j2)
∣∣∣ (66)

where DO/M is relative discriminant of O over M . For the second factor we have

J(α) =
[
ZM [α]+ : Z[α]+

]
=

=
1√

|DM |
[K:M ]

·
∏

1≤i1<i2≤m

k∏
j1=1

k∏
j2=1

∣∣∣α(i1,j1) − α(i2,j2)
∣∣∣ . (67)

Generators α0 of relative power integral bases of O over M have relative index IO/M (α0) =
1. The elements

α = A+ ε · α0, (68)

(where ε is a unit in M and A ∈ ZM ) have the same relative index, and are called equivalent
with α0 over M . Equivalently, all elements α ∈ O generating a power integral basis of O
(over Q), that is having IO(α) = 1, must be of the form (68), where α0 has relative index
IO/M (α0) = 1. In order that α generates a power integral basis of O we must also have
J(α) = 1. Therefore for each α0 ∈ O with relative index IO/M (α0) = 1, we have to
determine the unit ε ∈M and A ∈ ZM such that J(α) = 1.

We consider the octic field Kc = Q(ξ), where ξ is a root of the polynomial f(t) =
t4 − 2ct3 + 2t2 + 2ct + 1, where c ∈ ZM\ {0,±2}, M = Q(

√
−D) and D is a squarefree

positive integer. Therefore, m = [M : Q] = 2 and Kc is an extension of M of degree
k = [Kc : M ] = 4.

We have proved that all generators of relative power integral bases of O =ZM [ξ] over
M are given by

α1 = ξ, α2 = 2ξ − 2cξ2 + ξ3,

in the cases given in Theorem 1. Also, according to Remark 15, α1 and α2 are the genera-
tors of relative power integral bases for all c ∈ ZM\ {0,±2} .

27



Proof of Theorem 3. Taking α0 = α1, α2 we calculate J(α) with the α in (68). For
−D ≡ 2, 3 (mod 4) an integral basis of M is given by {1, ϑ} with ϑ =

√
−D. We have√

|DM |
[K:M ]

= 16D2.

We set c = p + qϑ with integer parameters p, q. Let A = a + bϑ with a, b ∈ Z. Note that
the product (67) in J(α) does not depend on a. We have ε = ±1 and for −D = −1 we also
have ε = ±i. The product

4∏
j1=1

4∏
j2=1

∣∣∣α(1,j1) − α(2,j2)
∣∣∣ (69)

is of degree 16, depending on D, p, q and b. We calculated this product by Maple using
symmetric polynomials. The result is a very complicated polynomial with integer coeffi-
cients of the above variables. We found that in each case the above product was divisible
by 4096D2. Therefore dividing it by 16D2 the J(α) is divisible by 256. This implies that
we cannot have J(α) = 1, therefore we cannot have IO(α) = 1.

Computational aspects
It was very difficult to perform the calculation of the product (69). We had to do it

in several steps making simplifications by using symmetric polynomials in each step. Even
so, this calculation has reached the limits of the capacities of Maple. We were not able to
perform this calculation for −D ≡ 1 (mod 4).

Acknowledgements. The authors would like to thank Professor Andrej Dujella for
helpful suggestions. The idea for Theorem 3 and the proof of it due to Professor István
Gaál.
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