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Abstract

Let ¢ > 3 be positive integer such that ¢, 4c 4+ 1, ¢ — 1 are square-free
integers relatively prime in pairs. In this paper we find minimal index
and determine all elements with minimal index in bicyclic biquadratic

field K = Q (\/(4c F1)e,/(c—1) c).

1 Introduction

Let K be an algebraic number field of degree n and O its ring of integers. For
any o € O

I(a)= ((’)} : Z[a]+>

is the index of the element a, where O} and Z [a]Jr respectively denote the
additive groups of Ok and the polynomial ring Z [a]. If K = Q () and « € Ok,
than we say that « is a primitive integer in the field K. The minimal index
u (K) of K is the minimum of the indices of all primitive integers in the field K.
The greatest common divisor of indices of all primitive integers of K is called
the field index of K, and will be denoted by m (K). Therefore the minimal
index p (K) is divisible by the field index m (K).
Let {1,ws,...,wy } be an integral basis of K. Let

L(X)=X14+weXo+ ... +w, Xy,

with conjugates L; (X) = X7 + wéi)XQ + ...+ ws)Xn, t=1,...,n. Then

Dipo(L(X) = [] (LX) -L; (X))

1<i<j<n
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is called discriminant of the linear form L (X). We have

Dicjg (L (X)) = (I (Xa, ..., X0))* Dic,

where Dk denotes the discriminant of K and I (Xs,..., X,,) is a homogenous
polynomial in n — 1 variables of degree n(n — 1) /2 with rational integer co-
efficients which is called the index form corresponding to the integral basis
{1,ws, ...,wp }. Tt is well known that if the primitive integer o € Ok 1is repre-
sented in an integral basis as a = x1 + Taws + ... + Tpwy,, then the index of « is
just I(a) =|I (22, ...,zn)].

If the number field K admits power integral basis {1,04, ...,a”_l}, ie. if
Ok = Z|a], it is called monogenic. Therefore, the element o« € O generates
a power integral basis if and only if I (o) = 1. Consequently, number field K is
monogenic if and only if u (K) = 1.

Biquadratic fields were considered by several authors. K. S. Williams [22]
gave an explicit formula for integral basis and discriminant of these fields. T.
Nakahara [20] proved that infinitely many fields of this type are monogenic, and
on the other hand, for any given N there are infinitely many non monogenic
fields of this type with minimal index p (K) > N. M. N. Gras, and F. Tanoe
[17] established necessary and sufficient conditions for biquadratic fields being
monogenic. 1. Gadl, A. Pethd and M. Pohst [16] gave an algorithm for deter-
mining minimal index and all generators of integral bases in the totally real case
by solving systems of simultaneous Pellian equations.

In the present paper we find the minimal index and determine all integral
elements with minimal index in the family of totally real bicyclic biquadratic
fields

K. :Q(\/(4c+1) c, \/c(cfl)> = (1)
Q(\/(4c+1)(c—1),\/c(c—1)) :Q(\/(4c+1)(c—1),\/(4c+1)c).

We distinguish two cases according to ¢ modulo 4. In both cases, by applying
the method of [16]: first we reduced our problem to consider a family of systems
of simultaneous Pellian equations. In order to find minimal index we use theory
of continued fractions to determine all minimal values of the right hand side of
the equations such that the system has solutions. In particular, we will use a
characterization in terms of continued fractions of « of all fractions a/b satisfying
the inequality

M
b727
where M € N, M < 5. After that finding all integral elements with minimal
index reduces to solving the system of Pellian equations
(c—1) X% —cY? = —4, 2)
(de+1) X% —4cT? = 4. (3)

o5l
ol
b

This system is very suitable for application of the method given in [7]. The
main result of the present paper is the following theorem



Theorem 1 Let ¢ > 3 be a positive integer such that ¢, 4c+1, c—1 are square-
free integers relatively prime in pairs. Then K. is totally real bicyclic biquadratic
field and

i) its field index is m (K.) = 1 for all ¢;
ii) the minimal index of K. is: p(K.) = 5 if ¢ = 3; p(K.) = 40 if ¢ =
3(mod4), ¢>7; u(K.) =80 if c=2(mod4);

iii) all integral elements with minimal index are given by

clc—=1)++/(4c+1)(c—1
1+ x2v/c(c— 1)+ 3 c(4c+1)+x4\/ ( ) \/2( ) ),
where x1 € Z and (x2,x3,24) = £(—1,0,1),+(0,0,1) ifc = 3; (22, z3,24) =
+(1,£1,2),£(3,£1,-2) if c = 3(mod4), ¢ > 7; if c = 2 (mod 4), then
all integral elements with minimal index are given by

1—|—\/(46—2|—1)(c—1)+w3m+x4\/c(c—1)+\/(4c—|—1)c

2 )

r1+2xo
where ©1 € Z and (x2,x3,24) = £ (£2,1,2), +(£2,3,-2).

Note that ¢, 4c+ 1, ¢ — 1 are integers relatively prime in pairs except when
¢ = 1(mod 5). Furthermore, by [10], there are infinitely many positive integers ¢
for which ¢ (4c + 1) (¢ — 1) is square-free integer. Therefore, there are infinitely
many positive integers ¢ for which ¢, 4c+1, ¢—1 are square-free integers relatively
prime in pairs, which again implies that there are infinitely many totally real
bicyclic biquadratic fields of the form (1).

2 Preliminaries

Let m, n denote distinct square-free integers. Let [ = ged (m,n) and let mq,
n1 be defined by m = lmy, n = In,. Under these conditions the quartic field
K = Q(y/m,+/n) has three distinct the quadratic subfields, namely Q (y/m),
Q(v/n), Q (\/m) and Galois group V4 (the Klein four group).

K.S. Williams [22] computed explicit formulae for integral basis and discrim-
inant of the field K = Q (y/m,y/n) in terms of m, n, my,n1, I. He distinguished
five cases according to the congruence behavior of m, n, my, n; modulo 4. In
[14], Ga4l, Peth$ and Pohst added the corresponding index forms:

Case 1. (m,n) = (mq,n1) = (1,1) (mod 4),
integral basis: {1, (1+/m)/2, (1++n)/2, (1+Vm+n+ ming) /4}
discriminant: Dy = (lm1n1)2
index form:

T4\2 M T4\2 my
I (zo,23,24) = (l (x2 + ?) - 4.(173) (l (£C3 + ?) - 4xi>

X |n (m +E)2—m (x —1—%)2
11|73 B 1\ T2 B)



Case 2. (m,n) = (1,1) (mod4), (my,n1) = (3,3) (mod4)
integral basis: {1, (14 v/m) /2, (1++/n)/2, (1 —vm+ n+ /miny) /4}
discriminant: Dy = (lm1n1)2
index form:

I (zg,23,24) = <l (:cg — %)2 — Txi) (l <£C3 + %)2 — Tmi)
(o5 (-5
Case 3. (m,n) = (1,2) (mod 4)
integral basis: {1, (1++/m)/2, vn, (Vn+mini)/2}

discriminant: Dy = (4lm1n1)2
index form:

T4\2 m
I (22, 23,24) = (I3 — mya3) <l (963 + ?4) - 41%2;)
2N 2
X <4n1 (:cg + é) — m1x§>
Case 4. (m,n) = (2,3) (mod 4)

integral basis: {1, \/m, /n, (vVm+ \/min1) /2}
. 2

discriminant: Dy = (8lmyn;)

index form:

2 2
X (2n1x§ — % (229 + x4)2>

l
I (w2, x3,74) = <2 (229 + 333)2 — nlxi) (2[x§ — mxi)

Case 5. (m,n) = (3,3) (mod 4)
integral basis: {1, vm, (vVm+vn)/2, (1+ /min;)/2}
discriminant: Dy = (4lm1n1)2
index form:

I(zg,23,24) = (l (225 + x3)° — nlxi) (12§ — mqaj)
2
X (le% —my (m + %) >
Finding the minimal index u (K) is equivalent to determining the minimal
i € N for which the equation
I(x9,23,4) = £tp in x9,x3,24 € Z (4)

is solvable. For xo,x3,74 € 7Z the quadratic factors of the index form admit
integral values. Fix the order of the factors in above index forms and denote



the absolute value of the first, second and third factor by Fy = Fy (z2,x3,24),
Fy = F3(x2,23,24), F3 = F5(x9,x3,24), respectively. That means we want
to find integers wo, x3, x4 such that the product Fj FyF3 is minimal. It can be
easily shown that Fi, Fy, F3, according to cases 1 —5 are related in the following
way (see [16, Lemma 1])

Lemma 2 The following hold:
Cases 1,2,4: =+ Fymy + Fonq = £F3l
Case 3 : + F1m1 + 4F2’fl1 = :|ZF3l
Case 5 : + F1m1 + anl = i4F3l
By Lemma 2 among the three possible equations only two are independent.
In the totally real case the index form is the product of tree factors Fi, Fs,
F3, of "Pellian type". In this case Gadl, Peth® and Pohst [16] gave following
algorithm for finding the minimal index and all elements with minimal index.
Consider system of equations obtained by equating the first quartic factor of
the index form with +F; and second factor with £F5. The system of these two
equations can be written as
Az? — By’ =C (5)
Di? —F2>=G in x,y,2€Z, (6)
where the values of A, B,C, D, F,G and the new variables x,y, z are listed in
the following table

Case A B C D F G x Y z
1 nt | +4F mi I H4Fy, x4 219414 273424
2 1 l :|:4F1 mq l :t4F2 Tq 21‘2 — XTq 21‘3 —+ x4
3 ny l :tFl mq [ :t4F2 T4 T2 21’3 —+ x4
4 ny ) +2F] m1/2 21 +F Ty 2x9 + T4 T3
5 ny l +F mq l +F Ty 2x9 + T4 T3

Note that mq is even in Case 4. In each particular case, first we find the field
index m (K) which we can easy calculate from [14, Theorem 4]. We proceed
with p =v-m (K) (v =1,2,...). For each such p we try to find positive integers
Py, Fy, F5 with y = Fy F5 F3 satisfying the corresponding relation of Lemma 2.
If there exist such Fy, Fy, F3, then we calculate all such triples. For each such
triple we determine all solutions of the corresponding system (5) and (6). If
none of these systems of equations have solutions, then we proceed to the next
v, otherwise p is the minimal index and collecting all solutions of systems of
equations corresponding to valid factors Fy, F5, F3 of u we get all solutions of
(4), i.e. we obtain all integral elements with minimal index in K.

3 Finding minimal index

Let ¢ > 3 be positive integer such that ¢, 4c+1, c—1 are square-free integers rel-
atively prime in pairs. Let m = mql, n = nyl where my,nq,l € {¢,4c+1,c — 1}



are distinct integers. Then field (1) is totally real bicyclic biquadratic field.

In order to prove Theorem 1 we will use a method of Gadl, Pethé and Pohst
[16] given in previous section. Since they distinguished five cases according to
the congruence behavior of m, n, mi, ny modulo 4, we have to observe following
cases:

i) If c=0(mod4) or ¢ =1 (mod4) then c or ¢ — 1 is not square free integer,
respectively;

ii) f c=2(mod4), my =4c+1,ny =cand !l =c—1, then ny =2 (mod4),
my = 1(mod4), | = 1(mod4) which implies m = 1(mod4) and n =
2 (mod 4) . Therefore, we obtain the system

(c—1)V?—cU? = +H, (7)
(dc+1)V? —cZ? = +F3, (8)
(4c+1)U? — (c — 1) Z? = +4F,, (9)
where
U=ux4, V=09, Z=2x3+ 24, (10)

and from Lemma 2 we obtain that
+(dc+ 1) Fy £ (c— 1) F5 = t4cF, (11)

must hold. In this case the integral basis of K, is

{1’ 1—1—\/(40—21—1)(0—1)7 Jee=T, \/0(0—1)4-\/(40-1—1)0}

2

and its discriminant is D = (4¢ (4c+ 1) (¢ — 1))

ili) Let ¢ =3 (mod4), ny =4c+ 1, m; =c—1,1=c Then n; = 1(mod4),
my = 2(mod4), I = 3(mod4) which implies m = mil = 2(mod4) and
n =nyl = 3 (mod4). In this case, we have the system

(dc+1)U? — cV? = £217 (12)
(c—1)U? — 4cZ% = +2F, (13)
4(4c+1) 2% = (c—1)V? = £2I3 (14)
where
U=ux4, V=2x9+1z4, Z =123, (15)

and from Lemma 2 we obtain that

+(c—1)F + (4c+ 1) Fy = +cF3 (16)



must hold. The integral basis of K., is

{1, Ve(e=1), Ve(de+1), \/C(C_l)+\/(4c+1)(c—1)}

2

and its discriminant is D = (8¢ (4c + 1) (¢ — 1))°.

Now we will calculate the field index m (K.) of K. First we form differences
di=mq1—1,dy=n1 -1, d3 = my —ni. We have:

i) di=3c+2,dy=1,d3=3c+1if ¢ =2(mod4),
iii) dy = —1,d2 =3c+1, d3 = —3c—2 if c = 3 (mod4).

In both cases, we find neither 3 nor 4 divides all three differences dy, ds, ds,
therefrom, according [14, Theorem 4], we conclude m (K.) = 1. Therefore, we
have proved statement i) of Theorem 1.

Note that if ¢ < 83 then ¢ € {3,7,14,15,22,23, 34, 35, 39, 43, 58, 59, 62, 67,
79,78} since ¢, 4¢ + 1, ¢ — 1 are square free positive integers relatively prime
in pairs. Therefore, according to this fact, we will suppose that ¢ > 14 if
¢ =2(mod4).

Now we will formulate our strategy of searching the minimal index p (K.) =:
p(c) and all elements with minimal index. Finding of minimal index pu (c) is
equivalent to finding system of above forms with minimal product Fj F5 F5 which
has solution. It is obvious that our fields are not monogenic since the necessary
condition miny = (—1)° (mod4), § =0, 1, is not satisfied (see [17]).

Observe that if (+Fy, +4F,, +F3) = (—4,20,4), then system (7), (8) and
(9) has solutions (U, V, Z) = (£2, £2, +4) which implies that p (¢) < 80 for all
¢ =2(mod4).

Similarly, if (£2Fy, +2F5, £2F3) = (4, —4,20), then system (12), (13) and
(14) has solutions (U, V, Z) = (£2, £4, £1) which implies that x (¢) < 40 for all
¢ =3(mod4).

Also, if ¢ = 3 and (£2Fy, £2F5, £2F5) = (10,2, —2), then system (12), (13)
and (14) has solutions (U,V, Z) = (£1,+£1,0) which implies that x (3) < 5. In
[16] it can be found that 1 (3) = 5 and all elements with minimal index are
given by (z9,zs,24) = +(—1,0,1),4+(0,0,1).

Therefore, it is natural to conjecture that for all ¢ = 3 (mod4), ¢ large
enough, corresponding fields have the same minimal index, i.e. that minimal
index doesn’t depend of ¢ if ¢ is large enough. Similarly for ¢ = 2 (mod4).
Therefore, we will suppose that FyFoF5 < 80 if ¢ = 2(mod4), ¢ > 14 and
FiFyF3 <40 if c=3(mod4), c>1T.

In both cases, first we use theory of continued fractions in order to determine
all possible small values of the right hand side of the first two equations of our
systems such that the system of these two equations has solutions. In particular,



we will use a characterization in terms of continued fractions of « of all fractions
a/b satisfying the inequality

a

o-¢l< 3
“T %

b2’

where M € N, M < 5. For all pairs (£F;, +F3) or (+F;,+F5) obtained in this
way, using corresponding relations (11) or (16), respectively, we will calculate
all possible triples (+Fy, +F5, £F3) for which our systems may have solutions.
Then for each obtained triple (£F;, +F5, £F3) we have to find are corresponding
systems solvable or not. Of all solvable systems that are obtained, we choose
system (or systems) with minimal product Fj F5F3. Then minimal index p (c)
is equal to that minimal product Fy F» F3 and solutions of that system (or these
systems) leads to all integral elements with minimal index.

3.1 Case ¢ =3 (mod4)

Let ¢ = 3(mod4), ¢ > 7. First suppose that (U,V, Z) is nonnegative integer
solution of the system of equations (12), (13) and (14) with FyFyF3 < 40.
Observe that if one of the integers U, V, Z is equal to zero, then (12), (13) and
(14) imply that other two integers are not equal to zero.

i) If U =0, then (12) and (13) imply
—cV? = 121,
—4cZ? = £2F,.

Therefrom we have FyFy = ¢2Z2V? < 40 and V is even. Since ¢ > 7,
V2 >4 and Z # 0 we obtain a contradiction.

ii) If Z =0, then (12), (13) and (14) imply

(4c+1)U? — cV? = £217,
(c—1)U? = +2F,
—(c—1)V? = +2F3.

Therefrom we have FoF35 = %U%ﬂ < 40. Since U, V # 0 we obtain a
contradiction if ¢ # 7,11. If ¢ = 7, then FyF3 = 9U?V? < 40 which implies
(U, V)= (1,1), (1,2), (2,1). If ¢ = 11, then FyF3 = 25U2V?2 < 40 which
implies (U, V) = (1,1). Additionally, we have

1 1 —1)?
RF =5 (4c+1)U? — §CV2 . %

VU2 <40, (17)
Now, for ¢ = 7 and (U,V) = (1,1),(1,2),(2,1) inequality (17) implies a
contradiction. Similarly, we obtain a contradiction for ¢ = 11 and (U, V) =
(1,1).



iii) If V = 0, then (12) and (14) imply
(4c+1)U? = £27,
4(4c+1) Z? = +2F3.

Therefrom we have FyFy = (4¢+1)° U222 < 40 and U is even. Since
c¢>7,U% >4 and Z # 0 we obtain a contradiction.

Let (U,V, Z) be positive integer solution of the system of Pellian equations

(de+1)U? — V2= )y, (18)
(c—1)U? —4cZ% = ). (19)

where A\; and A2 are non-zero integers such that |[\;| < 3Mjc and |Ag| <

3Msy (¢ — 1), where My, My € N, M; < 4, My < 5. Then % is a good ratio-

nal approximation of % and % is a good rational approximation of 4/ %.
First of all, we have % > 1. Indeed, if V < U, then (4c+ 1)(V +1)2 —cV2 <
3Mjc which is a contradiction. Similarly, % > 1, since for U < Z we obtain

4¢(U +1)*=(c — 1) U2 < 3Mj (¢ — 1) which implies a contradiction. Therefore,

we find that
V+\/4c:1U2U+U1/4+%>U+2U=3U,

which implies

-1

/40+1_K_4c+1_V72 /4c+1+K
c U c U2 c U
Pl 1My
cU?2 3~ U2’
Similarly,
4c 4
U+ Z>7Z+Zy\4+ >3Z
c—1 c—1
implies
-1
e Ul |4 P[4 U
c—1 Z| |e—1 22 c—1 Z
| A2 1<M2

“e-nz2 3° 22

Proposition 3 Let ¢ = 3 (mod4), ¢ > 7. Let (U, V,Z) be positive integer so-
lution of the system of Pellian equations (12) and (13) where ged (U, V) = d,
ged (U, Z) = g and Fy, F> < 40. Then

3 3
P < §Mlcd2 and Fy < 5 M, (c—1)g?%



where M1 =4 and My =5 forc=T; My = My =3 forc=11; My = My =2
for ¢ =15,19,23 and M1 = Ms =1 for ¢ > 35.

Proof. If ¢ > 35, than we have

3
F1§40<§-1-35-12§ M cd?

N W

and

My (c—1) g%

F2g4o<;1.(35—1)-12§g

Similarly for the cases ¢ =7,11,15,19,23. =

The simple continued fraction expansion of a quadratic irrational o = %b\/g
is periodic. This expansion can be obtained using the following algorithm.
Multiplying the numerator and the denominator by b, if necessary, we may
assume that b|(d — a?). Let so = a, to = b and

451 for > 20
— forn >0 (20)

ap = \‘%J7 Spn4+1 = af’ntn — Sn, tn—i—l =
(see [21, Chapter 7.7]). If (sj,t;) = (sk,tx) for j < k, then

a=lao,...,aj-1,85, -, Gk—1]-

Applying this algorithm to quadratic irrationals

\/4c+1 _ Ve(de+ 1) and \/ de Ve(e—1)

c c c—1 c—1
we find that
4 1 —
1/ crl_ [2,4c, 4], where (so,%0) = (0,¢),
c
(s1,t1) = (2¢,1), (s2,t2) = (2¢,¢) , (s3,t3) = (2¢,1)
and

\/E: [2,c—1,4] , where (so,t0) = (0,¢ — 1),
(s1,t1) = (2(c—1),4),(s2,12) = (2(c—1),c— 1), (s3,13) = (2(c — 1) ,4).

Let p,,/q, denote the nth convergent of .. The following result of Worley [23]
and Dujella [5] extends classical results of Legendere and Fatou concerning Dio-
phantine approximations of the form |a - %| < ﬁ and |a — %| < biz.

Theorem 4 (Worley [23], Dujella [5]) Let « be a real number and a and b
coprime monzero integers, satisfying the inequality

M

6727

where M is a positive real number. Then (a,b) = (rpp+1 £ UPn, rGnt1 £ UGn) ,
for some n > —1 and nonnegative integers r and u such that ru < 2M.

o=l
.
b

10



Explicit versions of Theorem 4 for M = 2, was given by Worley [23, Corol-
lary, p. 206]. Recently, Dujella and Ibrahimpagi¢ [6, Propositions 2.1 and 2.2]
extended Worley’s work and gave explicit and sharp versions of Theorem 4 for
M =3,4,..,12.

We would like to apply Theorem 4 in order to determine all values of A\;
with |A1] < 3Mjc, M7 € N, My < 4 for which equation (18) has solution and all
values of Ay with |Ao| < 3Msy(c—1), My € N, My <5 for which equation (19)
has solutions. We need following lemma (see [8, Lemma 1])

Lemma 5 Let aff be a positive integer which is not a perfect square, and let

Dn/qn denotes the nth convergent of continued fraction expansion of \/% Let

the sequences (sy,) and (t,) be defined by (20) for the quadratic irrational @
Then

a(rGni1 + ugn)® = B(rpns1 +upn)? = (1) (U tni1 + 2ruspgo — tnga). (21)

Since the period length of the continued fraction expansions of both 4%1

and 4/ 04_51 is equal to 2, according to Lemma 5, we have to consider only the

fractions (rpp4+1 + upn)/(rgns1 + ugy) for n = 0 and n = 1. By checking all
possibilities, it is now easy to prove the following results.

Proposition 6 Let ¢ = 3(mod4), ¢ > 7 and A1 be an non-zero integer such
that |A\1| < 3Mic and such that the equation (18) has a solution in relatively
prime integers V and Z.

i) If ¢ > 35 and My =1 then
A1 € Ay (¢) = {1, —c}.
it) If ¢ = 15,19,23 and My = 2 then
A€ Ay (¢) ={1,—¢,3c+ 1,1 —5¢,4c+ 1}
iit) If c =11 and My = 3 then

A €A (1) ={1,—¢,3¢+ 1,1 —5¢,4c+ 1,4+ Te,4 — 9¢}
= {1,—11,34, —54,45,81, —95} .

w) If c=7 and My =4 then

MeA (T)={1l,—¢3c+1,4c+ 1,1 —5¢,4+ Tc,4 — 9¢,9 — 13¢}
= {1,-7,22,-34,29,53, —59, —83, —82} .

Proposition 7 Let ¢ = 3(mod4), ¢ > 7 and \a be an non-zero integer such
that |A2| < 3Ms (¢ — 1) and such that the equation (19) has a solution in rela-
tively prime integers U and Z.

11



i) If ¢ > 35 and My =1 then

Ao EAQ(C):{—4,C—].}.

1) If c =15,19,23 and My = 2 then

Ao € Ay (¢) ={—4,¢—1,-3c—1,—4c,5¢c — 9}

iii) If c =11 and My = 3 then
Ao € A5 (11) ={—4,¢—1,-3c—1,—4¢,5¢ — 9, —Tc — 9,9¢ — 25}
= {—4,10, —34, —44, 46, —86, 74} .
w) If c=7 and My =5 then

Do € Ay (7) = —4,¢c—1,-3c—1,—4¢,5¢—9,—7c —9,9c — 25,
z=mAL = 12¢ — 16,13¢c — 49, 17¢ — 81, 21¢ — 121

= {—4,6,—22, 28,26, 58, 38,68, 42}
Corollary 8 Let c=3(mod4),c> 7.

i) Let (U, V) be positive integer solution of the equation (12) such that ged (U, V) =
d and F; < %Mlcd2 where M1 =4 forc=7, My =3 forc=11, M =2
forc=15,19, 23 and My =1 for ¢ > 35. Then

+2F; € {)\1d2 t A € Ay (C)},
where sets Ay (c) are given in Proposition 6.

it) Let (U, Z) be positive integer solution of the equation (13) such that ged (U, Z) =
g and Fy < %Mg(cfl)g2 where My =5 for ¢ =7, My = 3 for ¢ = 11,
My =2 for c =15, 19, 23 and My =1 for ¢ > 35. Then

+2F5 € {)\292 iy € A2 (C)},
where sets Ag (c) are given in Proposition 7.
Proof. Directly from Propositions 6 and 7. m

Proposition 9 Let ¢ = 3 (mod4), ¢ > 7. Let (U, V,Z) be positive integer so-
lution of the system of Pellian equations (12) and (13) where ged (U, V) = d,
ged (U, Z) = g and Fy, Fy < 40. Then

i)
(iFl,iFg) €eB (C) x D (C)
where B (¢) = BoU By (¢), D (¢) = DoU Dq (¢) and

By = {2,8,18,32}, Dy ={-2,—8,—18,-32},

12



3c+1

Bi(c)=0 if c¢> 35, Bl(c)z{ }—{35} if ¢=23,

3c+1

Bi () = { ,—2c} ={29,-38} if ¢c=19,

1 1-
Bl(c):{gc; .2, 250} if ¢<15,

—17,5,20,23,37} if ¢=11,

71 30+1 2 -1 2 }
a
7c+9 90 25 ldc 49 _ =
=, 552, 5 60 8

—11,3,12,13,19,21,27,34} if ¢=T.

9_
201

—1
Di(e)=0 if c> 83, Dl(c){c } if 35<c<T9,
-1 1
Dl(c):{c , 36; }:{—35,11} if ¢=23,
{c—l 3c+12(c—1),—20}
— {-38,-29,9,36) if c=19,
_{cl 3c+1 2(01)720,509}_
2
— {-30,-23,7,28,33} if c= 15,
:{c—l 30+1,2(C—1),—2C,502_9,90;25}
{-2
={-2

it) Additionally, if F1Fy < 40, then (£Fy,+Fy) € S(c) where S (¢) = So U
S1 (¢) and

So={(2,-2),(2,-8),(2,-18),(8,-2), (18, -2)}
S1(c) =0 for ¢ > 83;

Sl(c):{<2,(};1)} for 15 < ¢ < 79;

Si(c) = {(2,5),(2,—17). (2,20, (8,5), (17, —2)} for ¢ = 11;

_ (273)7(27_11)7(2 _14) (2 12)7( 713)7(2719)7 _ .
51(0) { (8,3),(11,-2),(11,3) , ( ~2),(~17,-2) } fore=T1;

Proof.

13



i) From Proposition 3 and Corollary 8 we have +2F| € {A1d2 A €Ay (c)}
and +2F, € {A29%: Ay € A3 (c)} where sets A; (c) and A; (c) are given
in Propositions 6.and 7, respectively. Therefore,

a) For all ¢ > 7 we have £2F; = d?, —cd?. Additionally, we have +2F; =
(Be+1)d?, (1 —5¢)d?, (de+1)d? if ¢ < 23, £2F; = (4+ Tc)d?,
(4—9c)d?%f ¢ = 11,7 and £2F; = (1 —12¢)d?, (9 —13c)d?, i.e
+2F, = —83d?, —82d? if ¢ = 7. Since F; < 40, we obtain:

i. P =% <40 implies d = 2,4,6,8, i.e. +F; = 2,8,18,3;

ii. In = % < 40 implies d < % < % < 4 and d is even, i.e.
d = 2. Thus, £F; = —2c¢ for ¢ < 19 since F; = 2¢ > 40 if ¢ > 23;
) 2 . . .
iii. F; = w < 40 implies d < 4 ?‘)/il <4 3\/75+1 < 2, ie.
d=1. Thus, +F; :M for ¢ < 23;
iv. F1=w<401mphebd<4\/g(1 <42 <2 e
d =1. Thus, £F; = 155 for ¢ < 15;

v. I} = W < 40 implies d < 4 ;(/Erl 4\/3{“ < 2 and d is

even, i.e. there is no solution;

vi. F1:% <401mphesd<4\/;fJr4 <4 7\C+4 < 2 and dis

even, i.e. there is no solution;

vii. ] = M<4Olmphesd<4‘[ <4\/9\§4<2anddls

even, i.e. there is no solution;
2
viii. F; = & < 40 implies d < 1, i.e. there is no solution.

ix. Iy = 82d < 40 implies d < 1, i.e. there is no solution.

Therefrom, we obtam sets B (c).
b) For all ¢ > 7 we have +2F, = —4g% (c—1)g? Additionally, we
have +2F, = —(3c+ 1) g%, —4cg?, (bc—9)g? if ¢ < 23, £2F, =
(=7c—9)g?%, (9c — 25) g% ifc < 11 and £2F; = (12¢ — 16) g2, (13c — 49) g2
i.e. £2F = 68¢2,42¢2 if c = 7. Since F, < 40, we obtain
i. b =2¢% < 40 implies g = 1,2,3,4, i.e. £F, = -2, -8, 18, —-32;
i 7 = et 2<401mphebg<4\/‘L<4f<4 fe. g=1,23.
Thus, we have +Fy = c; ife <79, £F, =2(c—1)ifc¢ <19
and £F, = % (c— 1) =2Tifc=T;

fii. F = 25 g? < 40 implies g < 422 < 4¢3f7+1 <2 ie g=1.
Thus, we have £F, = —3<H for ¢ < 23;

iv. Fy = 2cg? < 40 implies g < % < % < 2,i.e. g=1. Thus, we
have +Fy = —2c if ¢ < 19;

V. Fg:5C 2 2<401mphesg<4 ‘[ s <4 /5 <2 ie g=1.

V57-9
Thus, we have +F, = M if ¢ < 15

14



vi. Fy = %gz < 40 implies g < 4 V5 <y 7‘_/7‘?’+9 <2,ie g=

V7c+9 —
Thus, we have +Fy = —70;9 ife=71,;
vii. Fp = 25292 < 40 implies g < 425 <4 < 2 e,

g = 1. Thus, we have £F, = 2225 if ¢ < 11;

viii. Fy = (6¢c —8) g% = 34¢g% < 40 implies g = 1. Thus, we have
+Fy,=34ifc=T;

ix. Fp = 1354942 = 2142 < 40 implies g = 1. Thus, we have
+F,=21lifc=T;

Therefrom, we get sets D (c).
i3) Directly from i) since S (¢) = {(s,t) € B(c) x D (c) : |s| - |t] < 40}.

|

If system (12), (13) and (14) has solution for some positive integers Fy, Fb,
F3, F1FoF3 < 40, then (£F;, £F) € S(c), where set S (¢) is given in Proposi-
tion 9 and triple (£Fy, +F5, £ F3) satisfies one of the equations in (16). First, for
each pair (£Fy,£F5) € S (c) we check if there exist F3 € N, F; F5F5 < 40 such
that any of the equations (16) holds. For all pairs of the form (+Fy, +F5) = (s,t)

condition Fy FyF3 < 40 is satisfied if F5 € F (s,t) = {k eN: k< ﬁ} . There-
fore, for each pair (s,t) € S (¢) and for each k € F (s,t), we have to check if any

of these four equations
s(c=1)+t(dc+1)==xkc or s(c—1)—t(4c+1)==xkec (22)

holds. For example, (£Fy,£F5) = (2,-2) € S(c) for all ¢ > 7. From (22) we
obtain
—6c—4==4F3c or 10c= tF;sc.

Since F3 € F(2,-2) = {k € N: k <10} the only possibility is £F3 = 10.
Furthermore, (+Fy, +F) = (2,—-8) € S (¢) for all ¢ > 7. From (22) we obtain

—30c — 10 =+F3c or 34c+ 6= *Fjc,

which implies a contradiction if F5 € F'(2,—8) = {1,2}. We proceed similarly

for all elements of S (¢). The only triple we obtain on this way is (£F;, £ F», £ F3) =

(2,—2,10) and the corresponding system is

(4e+1)U? —cV2 =4 (23)
(c=1)U? —4cZ* = -4 (24)
4(4c+1)Z% — (c—1)V? = 20. (25)

Since this system has solution (U,V, Z) = (£2,£4,£1), we have u (c) = 40 for
all c=3(mod4), c>T.

Next step is finding all elements with minimal index. Therefore we have to
solve the above system.

15



If ¢ = 3 and (£2Fy, £2F, £2F3) = (10,2, —2), then system (12), (13) and
(14) has solutions (U,V, Z) = (£1,+1,0) which implies that  (3) < 5. There-
fore, if we suppose that Fy F5F3 < 5 and use the same procedure as for the case
¢ > 7, we obtain that the only possibility is (+Fy, £Fs, +F3) = (5,1, —1) and
the corresponding system is

13U%2 —3V? =10 (26)
U?-62*=1 (27)
V2672 =1. (28)

This system has solutions (U, V, Z) = (£1, £1,0) which implies that p(3) = 5.
In [1] Anglin showed that system (27) and (28) has only the trivial solutions
(U, V,Z) = (£1,£1,0) . Now using (15), we find that all integral elements with
minimal index are given by (z2,z3,24) = £ (—1,0,1), £(0,0,1).

3.2 Case ¢ =2(mod4)

For all ¢ = 2(mod 4), ¢ > 14, in similar way, we obtain that the only solvable
system of the form (7), (8) and (9) with F}y F5F5 < 80 is

(c—1)V?—cU? = -4, (29)
(de+1)V? —cZ* =4, (30)
(4c+1)U? — (¢ — 1) Z* = 20. (31)

Since this system has solution (U,V, Z) = (£2,£2,44), we have p (¢) = 80
for all ¢ =2 (mod4), ¢ > 14. In order to find all elements with minimal index,
we have to find all solutions to the system (29), (30) and (31).

Therefore, we have proved statement ii) of Theorem 1.

4 Finding all elements with minimal index

Now, we have to solve systems that are obtained in Section 3. These systems
are very suitable for application of method given in [7]. We will prove following
result

Theorem 10 i) Letc=2(mod4), ¢ > 14 be an integer. The only solutions
to system (29), (30) and (31) are (U,V,Z) = (£2,£2,4+4).

ii) Let ¢ =3 (mod4), ¢ > 7 be an integer. The only solutions to system (23),
(24) and (25) are (U,V,Z) = (£2,4+4,+1).

Therefrom we have following corollary which finishes the proof of Theorem
1.
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Corollary 11 Let ¢ > 7 be positive integer such that c, 4c+ 1, c—1 are square-
free integers relatively prime in pairs. Then all integral elements with minimal

index in the field K. = Q (\/(40 +1)e,\/e(c— 1)) are given by:

i) (z2,x3,m4) = £ (1,£1,2),£(3,£1,-2) if c =3 (mod4);
i) (T2,T3,74) = £ (£2,1,2), £(£2,3,-2) if c=2(mod4);
Proof.

i) Let ¢ = 3(mod4), ¢ > 7. Since all solutions of the system (23), (24) and
(25) are given by (U,V, Z) = (£2,+4,+£1) and since in this case we have
U =24,V =219 + x4, 7 = x3, Wwe obtain

Ty =12, 209 + x4 = +4, 3 = *1,

which implies (22, 73, 24) = (1, £1,2), (3, £1,—2), (=1, +1, —2) , (-3, £1,2).

ii) Let ¢ = 2(mod4). Since all solutions of the system (29), (30) and (31)
are given by (U,V, Z) = (£2,£2, £4) and since in this case we have U =
T4,V = 29,7 = 2x3 + x4, We obtain

Ty =12, ;9 = £2, 223 + 14 = +4,
which implies (22, 3, 24) = (£2,1,2), (£2,—-1,-2),(£2,3,-2),(£2,-3,2).

L]

Observe that if ¢ = 2 (mod 4) and (U, V, Z) is a solution to system (29), (30)
and (31), then all integers U,V, Z are even. Let Z = 2Z;. Then system (29)
and (30) is equivalent to the system

(c—1)V?*—cU? = -4, (32)
(4c+1)V? —4cZ? = 4. (33)

If ¢ = 3(mod4) and (U,V, Z) is a solution to system (23), (24) and (25),
then integers U,V are even. Let Zy = 2Z, V = 2V,. Then system (23) and (24)
is equivalent to the system

(c—1U? —cZ3 = —4, (34)
(4e+1)U? — 4¢Vi = 4. (35)

Therefore, in order to prove Theorem 10 it is enough to analyze system (2)
and (3), where ¢ > 7 and prove the following theorem:

Theorem 12 Let ¢ > 2 be an integer. Then the only solutions to system of
Pellian equations (2) and (3) are (X,Y,T) = (£2,+2,+2).
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In order to prove Theorem 12, first we will find a lower bound for solutions of
this system using the "congruence method" introduced in [9]. The comparison
of this lower bound with an upper bound obtained from a theorem of Bennett
[4] on simultaneous approximations of algebraic numbers finishes the proof for
¢ > 89037. For ¢ < 89036 we use a theorem a Baker and Wiistholz [3] and a
version of the reduction procedure due to Baker and Davenport [2].

Lemma 13 Let (X,Y,T) be positive integer solution of the system of Pellian
equations (2) and (3). Then there exist nonnegative integers m and n such that

X = vy = Wy,
where the sequences (vy,) and (wy,) are given by
vo=2, v1=8c—2,, Umia=22c—1)Vmsr1 —Vm, m=>0 (36)
and
wop =2, w;=32c+2, wpy2=28c+1)wpi1 —w,, n>0. (37)
Proof. Let Y1 = ¢Y, T} = 2¢T, then system (2) and (3) is equivalent to system
Y2 —c(c—1)X?% = 4c, (38)
T? —c(4e+1) X? = —4c. (39)
Since \/c (4c + 1) = [2¢,4,4c] and \/c(c— 1) = [c— 1,2,2 (¢ —1)| we find that
fundamental solutions of equations
A? —c(c—-1)B* =1, (40)
D? —c(4c+1)B* =1, (41)

are given by a; + biy/c(c—1) = 2¢ =1 4+ 2y/c(c—1), ag + bary/c(de+ 1) =
8¢ + 1+ 44/c(4c+ 1), respectively. By [19, Theorem 108], it follows that if
uo + voy/c(c — 1) is the fundamental solution of the class C of equation (38),
than inequalities

1 1
0<|u0|§\/2(al—|—1)~4c:\/2(2c—1—i—1)4c:2c7

b 2
0<vg< — Vic=—ouo = _\flc=2
2(a1 +1) 2(2c—1+1)

must hold. This implies that
up+voy/c(c—1) =2c+2y/c(c—1) and uy+viy/c(c—1) = —2c+2+/c(c—1)
are possible fundamental solution of equation (38). Since

upug = ¢ (c — 1) vovy(mod 4e) and  ugvj = uyve(mod 4c),

18



these solutions belong to the same class (see [19, Chapter VI, 58.]), so we have

only one fundamental solution ug 4+ vov/c(c — 1) = 2¢+ 24y/c(c — 1). Similarly,
by [19, Theorem 108a], we find that if sy + wo+/c(4c+ 1) is the fundamental
solution of the class C of equation (39), than inequalities

1 1
O§|so|§\/2(a1—1)~4c:\/2(80—1—1—1)40:40,

b 4
0<wy < 72\/402 —V4c = 2.
2(ay — 1) 2(8c+1—1)

must hold. This implies that

sotwov/c(de+ 1) = de+2+/c(de+ 1) and so+woy/c(de+ 1) = —de+2+/c(de+ 1)
are possible fundamental solution of equation (38). Since
5080 = ¢ (4c+ 1) wow((mod 4e) and  sow(, = sywo(mod 4c),

these solutions belong to the same class, therefore we have only one fundamental

solution sg + woy/c(dc+ 1) = 4¢c + 24/c(¢c—1). Now, the theory of Pellian

equations guarantees that all solutions of (2) and (3) are given by (36) and (37),
respectively. m
Therefore, in order to prove Theorem 12, it suffices to show that v, = w,
implies m =n = 0.
Solving recurrences (36) and (37) we find
1

o= (Ve Ve D (2e 12/ D))"
(e c—l)(Qc—l—? c(c—l))m], (42)

w”:ﬁ {(2ﬁ+ Ve +1) (8c+ 1+ 4\/m>n

—~(2ve — VA1) (8e+1-4/c(lc+ 1)) n} (43)

4.1 Congruence relations

Now, we will find a lower bound for nontrivial solutions using the "congruence
method".

Lemma 14 Let the sequences (vy,) and (wy,) be defined by (36) and (37). Then
for all m,n > 0 we have

Vm=(—1)""" (4m(m + 1)c —2) (mod 32¢?), (44)
w,=16n(n + 1)c+2 (mod 512¢%). (45)
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Proof. Both relations are obviously true for m,n € {0, 1}.
Assume that (44) is valid for m — 2 and m — 1. Then

Um=2(2¢ — 1) Vpp—1 — Upp—2
=22c—D[(-1)" 24 (m—1)mec—2)] = [(=1)™ 3 (4(m — 2)(m — 1)c — 2)]
=(—1)""" [=16¢*m (m — 1) + 4em (m + 1) — 2]
=(—1)™" (4m(m+1)c—2) (mod 32¢%).

Assume that (45) is valid for n — 2 and n — 1. Then

wp=28c+ 1) wp_1 — Wp—2
=2(8c+1)[16n(n —1)c+2] —[16(n —1) (n — 2)c + 2]
=16cn? + 16¢cn + 2
=[16n(n + 1)c+2] (mod 512¢?).

(]

Suppose that m and n are positive integers such that v,, = w,. Then, of

course, vy, = wy, (mod 32¢?). By Lemma 14, we have (—1)™ =1 (mod 2¢) and
therefore m is even.

Assume that m(m + 1) < Zc. Since n < m we also have n(n + 1) < Zc.

5
Furthermore, Lemma 14 implies

—4m(m + 1)c+2=16n(n+ 1)c+2 (mod 32¢%)

and
~m(m+1)

2
Consider the positive integer

=2n(n+1) (mod 4c). (46)
A=2n(n+1)+ w

We have 0 < A < 4c¢ and, by (46), A = 0(mod 2¢), a contradiction.
Hence m(m +1) > %c and it implies m > +/1.6¢c — 0.5. Therefore we proved

Proposition 15 If v,,, = w, and n # 0, then m > +/1.6¢ — 0.5.

4.2 An application of a theorem of Bennett

It is clear that the solutions of the system (38) and (39) induce good rational
approximations to the numbers

-1 /4 1
91 = ¢ and 92 = et .
c 4c

More precisely, we have
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Lemma 16 All positive integer solutions (X,Y,T) of the system of Pellian
equations (38) and (39) satisfy

Y 4
0 — —|<——— X2,
61 X| Ve(e=1)

T, 1
Oy — —|< = X2
102 = %< 2

Proof. We have

-1 1 -1 -1 1 -1
S E D A RV g i Y o A APl ¢
c 2 c c 2 c
_x c—l7
c
which implies
—-1
c—1 Y_c—l Y2 c—1+Y
V ¢ X/ | ¢ X2 V ¢ X
4

4 c
Vo1 Zae X
Similarly,
T s x i s x
4c 4c
implies
) _

]

The numbers 6, and 6, are square roots of rationals which are very close to

1. For simultaneous Diophantine approximations to such kind of numbers there

are very useful effective results of Masser and Rickert [18] and Bennett [4]. We
will use the following theorem of Bennett [4, Theorem 3.2].

Theorem 17 If a;, p;, ¢ and N are integers for 0 <i < 2, with ag < a1 < asg,
a; =0 for some 0 < j <2, ¢ nonzero and N > M?, where

— 11 >
M OrgggQ{Iazl}_&

aj; Pi
14 22 2
0%?5}(2{‘ * N q

21
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where
log(32.04N~)

A=1+
log (1.68]\72 H0§i<‘j§2(ai - aj)—Q)

and

2a2 —2a0—a1 5
(az—ao)~(a1—ao)
ai1+as—2ag

{ (a2—a0)(az—a1)® 4 0> g — gy,
Y= .
if aa — a1 < a1 — ag.
We will apply Theorem 17 with ag = —4, a1 =0, a3 =1, N = 4¢, M = 4,

g=X,po=Y,p1 =X, py =T. If ¢c > 65537, then the condition N > M? is
satisfied and we obtain

(130 - 4c - 4%)—1)(—A < c(i—1) S X2, (47)
If ¢ > 84762 then 2 — XA > 0 and (47) implies
log X < 121'_7i2 . (48)
Furthermore,
1 1 log (0.0672¢?)

< .
_ log(5696¢)
2- N 1 JoeCoae ™ log(0.000011797c)

On the other hand, from (43) we find that

wn > (20— 1+2/clc— 1))m > (de— 3)™,
and Proposition 15 implies that if (m,n) # (0,0), then
X > (4c — 3)V1:6e705

Therefore,
log X > (V1.6¢c — 0.5) log(4c — 3). (49)
Combining (48) and (49) we obtain

11.7821og (0.0672 ¢?)
log(4c — 3) log(0.000011797¢)

Vv1.6c— 0.5 <

and (50) yields to a contradiction if ¢ > 89037. Therefore we proved

Proposition 18 If ¢ is an integer such that ¢ > 89037, then the only solution
of the equation vy, = w, is (m,n) = (0,0).
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4.3 The Baker-Davenport method

In this section we will apply so called Baker-Davenport reduction method in
order to prove Theorem 12 for 2 < ¢ < 89036.

Lemma 19 If v, = w, and n # 0, then
0 < mlog (20 —14+2y/c(c— 1)) —nlog (80+ 14+ 4+/c(4e + 1))

VETI(/e+ve=T) “2n
Hlog S ey < 031374 (8c+ 1+ 4y/c(de 1 1)) .

Proof. In standard way (for e.g. see [7, Lemma 5]) |
Now we will apply the following theorem of Baker and Wiistholz [3]:

Theorem 20 For a linear form A # 0 in logarithms of | algebraic numbers
i, ..., op with rational integer coefficients by, ...,b; we have

log A > —18(1 + )11 (32d)" 21/ (1) - - - B/ () log(21d) log B,

where B = max{|b1],...,|b|}, and where d is the degree of the number field
generated by aq, ..., q;.
Here

W (@) = 3 max {h(a), | log ol 1},

and h(a) denotes the standard logarithmic Weil height of a.
We will apply Theorem 20 to the form from Lemma 19. We have [ = 3,
d=4, B=m,

ag =2¢c—142y/c(c—1), ag =8¢+ 1+4+/c(4e+ 1),

o — Vidc+1(/e++ve—1)
° Ve—112yc+Vac+ 1)

Under the assumption that 2 < ¢ < 89036 we find that

1 1 1
b (aq) = 3 logay < 5 log 4c, B (ag) = 3 log iy < 7.0848.

Furthermore, ag < 1.2427, and the conjugates of ag satisfy

o] = Vidc+1(y/e—+Ve—1) <1
T Ve—1@2ye+Vic+1)

Ve +I(—e+Ve-1)
C Ve—1(2y/c— Vic+1)

| "y __ V4c+1(\/c_1+\ﬁ)(\/4c+1+2\/6)
@ 1= Vo1

4 < 7.2427

< 1424583.1.
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Therefore,

1
W (as) < § log [(c C1)2.1.2427-7.2427- 1424583.1] < 9.7901.

Finally,

log {0.313 74 (80 t14 4@) 72”} < —2nlog(4e).

Hence, Theorem 20 implies

1
2nlog(4c) < 3.822 - 10 - 3 -log(4c) - 7.0848. - 9.7901 log m

and
< 6.6275-10'°. (51)

logm

By Lemma 19, we have

mlog (20 —14+2y/c(c— 1)) < nlog(8c+1+4y/c(4c+1)) +2.7188 x 10~*
< nlog {(8c+ 1+ 4y/c(dc+1))- 1.0004]

and m
o < 2.0003 (52)

Combining (51) and (52), we obtain

m 2.0003 -n
<
logm logn

< 2.0003-6.6275- 10" < 1.3258 x 107

which implies m < 5.7264 x 10!8.

‘We may reduce this large upper bound using a variant of the Baker-Davenport
reduction procedure [2]. The following lemma is a slight modification of [9,
Lemma 5 a)]:

Lemma 21 Assume that M is a positive integer. Let p/q be a convergent of the
continued fraction expansion of k such that ¢ > 10M and let € = ||uq||—M-||xq||,
where || - || denotes the distance from the nearest integer. If € > 0, then there is
no solution of the inequality

O<m-nk+pu<AB™"

in integers m and n with

log(Aq/¢)

<n<M.
log B =n=
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We apply Lemma 21 with

log cva log a3 0.31374
K= ) =, A = 9
log oy log aq log oy

2
B= (80 1+ 4y/c(de + 1)) and M = 5.7264 x 10'.

If the first convergent such that ¢ > 10M does not satisfy the condition € > 0,
then we use the next convergent.

We performed the reduction from Lemma 21 for 2 < ¢ < 89036. The use
of the second convergent was necessary in 3249 cases (= 3.65%), the third
convergent was used in 63 cases (= 0.08%), the forth in 14 cases, the fifth in 2
cases and seventh convergent is used in only one case: ¢ = 69953. In all cases we
obtained n < 6. More precisely, we obtained n < 6 for ¢ > 2; n < 5 for ¢ > 4;
n<4forc>6;n<3forc>24;n<2for c>256;n <1 for c>74211. The
next step of the reduction in all cases gives n < 1, which completes the proof.

Therefore, we proved

Proposition 22 If ¢ is an integer such that 2 < ¢ < 89036, then the only
solution of the equation vy, = wy, is (m,n) = (0,0).

PROOF OF THEOREM 12. The statement follows directly from Propositions
18 and 22.
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