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Abstract

Let c � 3 be positive integer such that c; 4c+ 1; c� 1 are square-free
integers relatively prime in pairs. In this paper we �nd minimal index
and determine all elements with minimal index in bicyclic biquadratic

�eld K = Q
�p

(4c+ 1) c;
p
(c� 1) c

�
.

1 Introduction

Let K be an algebraic number �eld of degree n and OK its ring of integers. For
any � 2 OK

I (�) =
�
O+K : Z [�]

+
�

is the index of the element �; where O+K and Z [�]+ respectively denote the
additive groups of OK and the polynomial ring Z [�]. If K = Q (�) and � 2 OK ,
than we say that � is a primitive integer in the �eld K. The minimal index
� (K) of K is the minimum of the indices of all primitive integers in the �eld K:
The greatest common divisor of indices of all primitive integers of K is called
the �eld index of K, and will be denoted by m (K). Therefore the minimal
index � (K) is divisible by the �eld index m (K).
Let f1; !2; :::; !ng be an integral basis of K. Let

L (X) = X1 + !2X2 + :::+ !nXn;

with conjugates Li (X) = X1 + !
(i)
2 X2 + :::+ !

(i)
n Xn; i = 1; :::; n. Then

DK=Q (L (X)) =
Y

1�i<j�n
(Li (X)� Lj (X))2
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is called discriminant of the linear form L (X) : We have

DK=Q (L (X)) = (I (X2; :::; Xn))
2
DK ;

where DK denotes the discriminant of K and I (X2; :::; Xn) is a homogenous
polynomial in n � 1 variables of degree n (n� 1) =2 with rational integer co-
e¢ cients which is called the index form corresponding to the integral basis
f1; !2; :::; !ng. It is well known that if the primitive integer � 2 OK is repre-
sented in an integral basis as � = x1 + x2!2 + :::+ xn!n, then the index of � is
just I (�) = jI (x2; :::; xn)j :
If the number �eld K admits power integral basis

�
1; �; :::; �n�1

	
; i.e. if

OK = Z [�] ; it is called monogenic. Therefore, the element � 2 OK generates
a power integral basis if and only if I (�) = 1: Consequently, number �eld K is
monogenic if and only if � (K) = 1.
Biquadratic �elds were considered by several authors. K. S. Williams [22]

gave an explicit formula for integral basis and discriminant of these �elds. T.
Nakahara [20] proved that in�nitely many �elds of this type are monogenic, and
on the other hand, for any given N there are in�nitely many non monogenic
�elds of this type with minimal index � (K) > N . M. N. Gras, and F. Tanoe
[17] established necessary and su¢ cient conditions for biquadratic �elds being
monogenic. I. Gaál, A. Peth½o and M. Pohst [16] gave an algorithm for deter-
mining minimal index and all generators of integral bases in the totally real case
by solving systems of simultaneous Pellian equations.
In the present paper we �nd the minimal index and determine all integral

elements with minimal index in the family of totally real bicyclic biquadratic
�elds

Kc = Q
�p

(4c+ 1) c;
p
c (c� 1)

�
= (1)

Q
�p

(4c+ 1) (c� 1);
p
c (c� 1)

�
= Q

�p
(4c+ 1) (c� 1);

p
(4c+ 1) c

�
:

We distinguish two cases according to c modulo 4. In both cases, by applying
the method of [16]: �rst we reduced our problem to consider a family of systems
of simultaneous Pellian equations. In order to �nd minimal index we use theory
of continued fractions to determine all minimal values of the right hand side of
the equations such that the system has solutions. In particular, we will use a
characterization in terms of continued fractions of � of all fractions a=b satisfying
the inequality ����� a

b

��� < M

b2
;

where M 2 N; M � 5: After that �nding all integral elements with minimal
index reduces to solving the system of Pellian equations

(c� 1)X2 � cY 2 = �4; (2)

(4c+ 1)X2 � 4cT 2 = 4: (3)

This system is very suitable for application of the method given in [7]. The
main result of the present paper is the following theorem
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Theorem 1 Let c � 3 be a positive integer such that c; 4c+1; c�1 are square-
free integers relatively prime in pairs. Then Kc is totally real bicyclic biquadratic
�eld and

i) its �eld index is m (Kc) = 1 for all c;

ii) the minimal index of Kc is: � (Kc) = 5 if c = 3; � (Kc) = 40 if c �
3 (mod 4) ; c � 7; � (Kc) = 80 if c � 2 (mod 4) ;

iii) all integral elements with minimal index are given by

x1 + x2
p
c (c� 1) + x3

p
c (4c+ 1) + x4

p
c (c� 1) +

p
(4c+ 1) (c� 1)
2

;

where x1 2 Z and (x2; x3; x4) = � (�1; 0; 1) ;� (0; 0; 1) if c = 3; (x2; x3; x4) =
� (1;�1; 2) ;� (3;�1;�2) if c � 3 (mod 4) ; c � 7; if c � 2 (mod 4), then
all integral elements with minimal index are given by

x1+x2
1 +

p
(4c+ 1) (c� 1)

2
+x3

p
c (c� 1)+x4

p
c (c� 1) +

p
(4c+ 1) c

2
;

where x1 2 Z and (x2; x3; x4) = � (�2; 1; 2) ; � (�2; 3;�2) :

Note that c; 4c+ 1; c� 1 are integers relatively prime in pairs except when
c � 1(mod 5): Furthermore, by [10], there are in�nitely many positive integers c
for which c (4c+ 1) (c� 1) is square-free integer. Therefore, there are in�nitely
many positive integers c for which c; 4c+1; c�1 are square-free integers relatively
prime in pairs, which again implies that there are in�nitely many totally real
bicyclic biquadratic �elds of the form (1).

2 Preliminaries

Let m, n denote distinct square-free integers. Let l = gcd (m;n) and let m1,
n1 be de�ned by m = lm1, n = ln1: Under these conditions the quartic �eld
K = Q (

p
m;
p
n) has three distinct the quadratic sub�elds, namely Q (

p
m) ;

Q (
p
n), Q

�p
m1n1

�
and Galois group V4 (the Klein four group).

K.S. Williams [22] computed explicit formulae for integral basis and discrim-
inant of the �eld K = Q (

p
m;
p
n) in terms of m, n; m1; n1; l. He distinguished

�ve cases according to the congruence behavior of m, n, m1, n1 modulo 4. In
[14], Gaál, Peth½o and Pohst added the corresponding index forms:

Case 1. (m;n) � (m1; n1) � (1; 1) (mod 4) ;
integral basis:

�
1; (1 +

p
m) =2; (1 +

p
n) =2;

�
1 +

p
m+

p
n+

p
m1n1

�
=4
	

discriminant: DK = (lm1n1)
2

index form:

I (x2; x3; x4) =

�
l
�
x2 +

x4
2

�2
� n1
4
x24

��
l
�
x3 +

x4
2

�2
� m1

4
x24

�
�
�
n1

�
x3 +

x4
2

�2
�m1

�
x2 +

x4
2

�2�
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Case 2. (m;n) � (1; 1) (mod 4) ; (m1; n1) � (3; 3) (mod 4)
integral basis:

�
1; (1 +

p
m) =2; (1 +

p
n) =2;

�
1�

p
m+

p
n+

p
m1n1

�
=4
	

discriminant: DK = (lm1n1)
2

index form:

I (x2; x3; x4) =

�
l
�
x2 �

x4
2

�2
� n1
4
x24

��
l
�
x3 +

x4
2

�2
� m1

4
x24

�
�
�
n1

�
x3 +

x4
2

�2
�m1

�
x2 �

x4
2

�2�
Case 3. (m;n) � (1; 2) (mod 4)

integral basis:
�
1; (1 +

p
m) =2;

p
n;
�p
n+

p
m1n1

�
=2
	

discriminant: DK = (4lm1n1)
2

index form:

I (x2; x3; x4) =
�
lx22 � n1x24

��
l
�
x3 +

x4
2

�2
� m1

4
x24

�
�
�
4n1

�
x3 +

x4
2

�2
�m1x

2
2

�
Case 4. (m;n) � (2; 3) (mod 4)

integral basis:
�
1;
p
m;

p
n;
�p
m+

p
m1n1

�
=2
	

discriminant: DK = (8lm1n1)
2

index form:

I (x2; x3; x4) =

�
l

2
(2x2 + x3)

2 � n1
2
x24

��
2lx23 �

m1

2
x24

�
�
�
2n1x

2
3 �

m1

2
(2x2 + x4)

2
�

Case 5. (m;n) � (3; 3) (mod 4)
integral basis:

�
1;
p
m; (

p
m+

p
n) =2;

�
1 +

p
m1n1

�
=2
	

discriminant: DK = (4lm1n1)
2

index form:

I (x2; x3; x4) =
�
l (2x2 + x3)

2 � n1x24
� �
lx23 �m1x

2
4

�
�
�
n1
4
x23 �m1

�
x2 +

x3
2

�2�
Finding the minimal index � (K) is equivalent to determining the minimal

� 2 N for which the equation

I (x2; x3; x4) = �� in x2; x3; x4 2 Z (4)

is solvable. For x2; x3; x4 2 Z the quadratic factors of the index form admit
integral values. Fix the order of the factors in above index forms and denote
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the absolute value of the �rst, second and third factor by F1 = F1 (x2; x3; x4) ;
F2 = F3 (x2; x3; x4) ; F3 = F3 (x2; x3; x4), respectively. That means we want
to �nd integers x2; x3; x4 such that the product F1F2F3 is minimal. It can be
easily shown that F1; F2; F3, according to cases 1�5 are related in the following
way (see [16, Lemma 1])

Lemma 2 The following hold:

Cases 1; 2; 4 : � F1m1 � F2n1 = �F3l
Case 3 : � F1m1 � 4F2n1 = �F3l
Case 5 : � F1m1 � F2n1 = �4F3l

By Lemma 2 among the three possible equations only two are independent.
In the totally real case the index form is the product of tree factors F1; F2;
F3, of "Pellian type". In this case Gaál, Peth½o and Pohst [16] gave following
algorithm for �nding the minimal index and all elements with minimal index.
Consider system of equations obtained by equating the �rst quartic factor of
the index form with �F1 and second factor with �F2: The system of these two
equations can be written as

Ax2 �By2 = C (5)

Dx2 � Fz2 = G in x; y; z 2 Z; (6)

where the values of A;B;C;D; F;G and the new variables x; y; z are listed in
the following table

Case A B C D F G x y z
1 n1 l �4F1 m1 l �4F2 x4 2x2 + x4 2x3 + x4
2 n1 l �4F1 m1 l �4F2 x4 2x2 � x4 2x3 + x4
3 n1 l �F1 m1 l �4F2 x4 x2 2x3 + x4
4 n1 l �2F1 m1=2 2l �F2 x4 2x2 + x4 x3
5 n1 l �F1 m1 l �F2 x4 2x2 + x4 x3

Note that m1 is even in Case 4. In each particular case, �rst we �nd the �eld
index m (K) which we can easy calculate from [14, Theorem 4]: We proceed
with � = � �m (K) (� = 1; 2; :::). For each such � we try to �nd positive integers
F1; F2; F3 with � = F1F2F3 satisfying the corresponding relation of Lemma 2.
If there exist such F1; F2; F3, then we calculate all such triples. For each such
triple we determine all solutions of the corresponding system (5) and (6). If
none of these systems of equations have solutions, then we proceed to the next
�, otherwise � is the minimal index and collecting all solutions of systems of
equations corresponding to valid factors F1; F2; F3 of � we get all solutions of
(4), i.e. we obtain all integral elements with minimal index in K.

3 Finding minimal index

Let c � 3 be positive integer such that c; 4c+1; c�1 are square-free integers rel-
atively prime in pairs. Let m = m1l, n = n1l where m1; n1; l 2 fc; 4c+ 1; c� 1g
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are distinct integers. Then �eld (1) is totally real bicyclic biquadratic �eld.
In order to prove Theorem 1 we will use a method of Gaál, Peth½o and Pohst

[16] given in previous section. Since they distinguished �ve cases according to
the congruence behavior of m, n, m1, n1 modulo 4, we have to observe following
cases:

i) If c � 0 (mod 4) or c � 1 (mod 4) then c or c� 1 is not square free integer,
respectively;

ii) If c � 2 (mod 4) ; m1 = 4c+ 1; n1 = c and l = c� 1; then n1 � 2 (mod 4) ;
m1 � 1 (mod 4) ; l � 1 (mod 4) which implies m � 1 (mod 4) and n �
2 (mod 4) : Therefore, we obtain the system

(c� 1)V 2 � cU2 = �F1; (7)

(4c+ 1)V 2 � cZ2 = �F3; (8)

(4c+ 1)U2 � (c� 1)Z2 = �4F2; (9)

where
U = x4; V = x2; Z = 2x3 + x4; (10)

and from Lemma 2 we obtain that

� (4c+ 1)F1 � (c� 1)F3 = �4cF2 (11)

must hold. In this case the integral basis of Kc is(
1;
1 +

p
(4c+ 1) (c� 1)

2
;
p
c (c� 1);

p
c (c� 1) +

p
(4c+ 1) c

2

)

and its discriminant is D = (4c (4c+ 1) (c� 1))2 :

iii) Let c � 3 (mod 4) ; n1 = 4c+ 1; m1 = c� 1; l = c: Then n1 � 1 (mod 4) ;
m1 � 2 (mod 4) ; l � 3 (mod 4) which implies m = m1l � 2 (mod 4) and
n = n1l � 3 (mod 4). In this case, we have the system

(4c+ 1)U2 � cV 2 = �2F1 (12)

(c� 1)U2 � 4cZ2 = �2F2 (13)

4 (4c+ 1)Z2 � (c� 1)V 2 = �2F3 (14)

where
U = x4; V = 2x2 + x4; Z = x3; (15)

and from Lemma 2 we obtain that

� (c� 1)F1 � (4c+ 1)F2 = �cF3 (16)
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must hold. The integral basis of Kc is(
1;
p
c (c� 1);

p
c (4c+ 1);

p
c (c� 1) +

p
(4c+ 1) (c� 1)
2

)

and its discriminant is D = (8c (4c+ 1) (c� 1))2 :

Now we will calculate the �eld index m (Kc) of Kc. First we form di¤erences
d1 = m1 � l; d2 = n1 � l; d3 = m1 � n1. We have:

ii) d1 = 3c+ 2; d2 = 1; d3 = 3c+ 1 if c � 2 (mod 4) ;

iii) d1 = �1; d2 = 3c+ 1; d3 = �3c� 2 if c � 3 (mod 4) :

In both cases, we �nd neither 3 nor 4 divides all three di¤erences d1; d2; d3,
therefrom, according [14, Theorem 4], we conclude m (Kc) = 1: Therefore, we
have proved statement i) of Theorem 1.
Note that if c � 83 then c 2 f3; 7; 14; 15; 22; 23; 34; 35; 39; 43; 58; 59; 62; 67;

79; 78g since c; 4c + 1; c � 1 are square free positive integers relatively prime
in pairs. Therefore, according to this fact, we will suppose that c � 14 if
c � 2 (mod 4) :
Now we will formulate our strategy of searching the minimal index � (Kc) =:

� (c) and all elements with minimal index. Finding of minimal index � (c) is
equivalent to �nding system of above forms with minimal product F1F2F3 which
has solution. It is obvious that our �elds are not monogenic since the necessary
condition m1n1 � (�1)� (mod 4) ; � = 0; 1; is not satis�ed (see [17]).
Observe that if (�F1;�4F2;�F3) = (�4; 20; 4) ; then system (7), (8) and

(9) has solutions (U; V; Z) = (�2;�2;�4) which implies that � (c) � 80 for all
c � 2 (mod 4) :
Similarly, if (�2F1;�2F2;�2F3) = (4;�4; 20), then system (12), (13) and

(14) has solutions (U; V; Z) = (�2;�4;�1) which implies that � (c) � 40 for all
c � 3 (mod 4) :
Also, if c = 3 and (�2F1;�2F2;�2F3) = (10; 2;�2), then system (12), (13)

and (14) has solutions (U; V; Z) = (�1;�1; 0) which implies that � (3) � 5: In
[16] it can be found that � (3) = 5 and all elements with minimal index are
given by (x2; x3; x4) = � (�1; 0; 1) ;� (0; 0; 1) :
Therefore, it is natural to conjecture that for all c � 3 (mod 4) ; c large

enough, corresponding �elds have the same minimal index, i.e. that minimal
index doesn�t depend of c if c is large enough. Similarly for c � 2 (mod 4).
Therefore, we will suppose that F1F2F3 � 80 if c � 2 (mod 4) ; c � 14 and
F1F2F3 � 40 if c � 3 (mod 4) ; c � 7:
In both cases, �rst we use theory of continued fractions in order to determine

all possible small values of the right hand side of the �rst two equations of our
systems such that the system of these two equations has solutions. In particular,
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we will use a characterization in terms of continued fractions of � of all fractions
a=b satisfying the inequality ����� a

b

��� < M

b2
;

where M 2 N; M � 5: For all pairs (�F1;�F3) or (�F1;�F2) obtained in this
way, using corresponding relations (11) or (16), respectively, we will calculate
all possible triples (�F1;�F2;�F3) for which our systems may have solutions.
Then for each obtained triple (�F1;�F2;�F3) we have to �nd are corresponding
systems solvable or not. Of all solvable systems that are obtained, we choose
system (or systems) with minimal product F1F2F3. Then minimal index � (c)
is equal to that minimal product F1F2F3 and solutions of that system (or these
systems) leads to all integral elements with minimal index.

3.1 Case c � 3 (mod 4)
Let c � 3 (mod 4), c � 7: First suppose that (U; V; Z) is nonnegative integer
solution of the system of equations (12), (13) and (14) with F1F2F3 � 40:
Observe that if one of the integers U; V; Z is equal to zero, then (12), (13) and
(14) imply that other two integers are not equal to zero.

i) If U = 0; then (12) and (13) imply

�cV 2 = �2F1;
�4cZ2 = �2F2:

Therefrom we have F1F2 = c2Z2V 2 � 40 and V is even. Since c � 7,
V 2 � 4 and Z 6= 0 we obtain a contradiction.

ii) If Z = 0; then (12), (13) and (14) imply

(4c+ 1)U2 � cV 2 = �2F1;
(c� 1)U2 = �2F2;
� (c� 1)V 2 = �2F3:

Therefrom we have F2F3 =
(c�1)2
4 U2V 2 � 40: Since U , V 6= 0 we obtain a

contradiction if c 6= 7; 11: If c = 7; then F2F3 = 9U2V 2 � 40 which implies
(U; V ) = (1; 1) ; (1; 2) ; (2; 1) : If c = 11; then F2F3 = 25U2V 2 � 40 which
implies (U; V ) = (1; 1) : Additionally, we have

F1F2F3 =

����12 (4c+ 1)U2 � 12cV 2
���� � (c� 1)24

� V 2U2 � 40: (17)

Now, for c = 7 and (U; V ) = (1; 1) ; (1; 2) ; (2; 1) inequality (17) implies a
contradiction. Similarly, we obtain a contradiction for c = 11 and (U; V ) =
(1; 1) :
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iii) If V = 0; then (12) and (14) imply

(4c+ 1)U2 = �2F1
4 (4c+ 1)Z2 = �2F3:

Therefrom we have F1F3 = (4c+ 1)
2
U2Z2 � 40 and U is even. Since

c � 7; U2 � 4 and Z 6= 0 we obtain a contradiction.

Let (U; V; Z) be positive integer solution of the system of Pellian equations

(4c+ 1)U2 � cV 2 = �1; (18)

(c� 1)U2 � 4cZ2 = �2: (19)

where �1 and �2 are non-zero integers such that j�1j � 3M1c and j�2j �
3M2 (c� 1), where M1, M2 2 N; M1 � 4; M2 � 5. Then V

U is a good ratio-

nal approximation of
q

4c+1
c and U

Z is a good rational approximation of
q

4c
c�1 :

First of all, we have V
U � 1. Indeed, if V < U , then (4c + 1)(V + 1)2 � cV 2 �

3M1c which is a contradiction. Similarly, UZ � 1; since for U < Z we obtain
4c (U + 1)

2�(c� 1)U2 � 3M2 (c� 1) which implies a contradiction. Therefore,
we �nd that

V +

r
4c+ 1

c
U � U + U

r
4 +

1

c
> U + 2U = 3U;

which implies �����
r
4c+ 1

c
� V
U

�����=
�����4c+ 1c � V

2

U2

����� �
�����
r
4c+ 1

c
+
V

U

�����
�1

<
j�1j
cU2

� 1
3
� M1

U2
:

Similarly,

U +

r
4c

c� 1Z � Z + Z
r
4 +

4

c� 1 > 3Z

implies �����
r

4c

c� 1 �
U

Z

�����=
����� 4cc� 1 � U2Z2

����� �
�����
r

4c

c� 1 +
U

Z

�����
�1

<
j�2j

(c� 1)Z2 �
1

3
� M2

Z2
:

Proposition 3 Let c � 3 (mod 4) ; c � 7: Let (U; V; Z) be positive integer so-
lution of the system of Pellian equations (12) and (13) where gcd (U; V ) = d;
gcd (U;Z) = g and F1; F2 � 40: Then

F1 �
3

2
M1cd

2 and F2 �
3

2
M2 (c� 1) g2;
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where M1 = 4 and M2 = 5 for c = 7; M1 = M2 = 3 for c = 11; M1 = M2 = 2
for c = 15; 19; 23 and M1 =M2 = 1 for c � 35:

Proof. If c � 35; than we have

F1 � 40 <
3

2
� 1 � 35 � 12 � 3

2
M1cd

2

and
F2 � 40 <

3

2
� 1 � (35� 1) � 12 � 3

2
M2 (c� 1) g2:

Similarly for the cases c = 7; 11; 15; 19; 23:
The simple continued fraction expansion of a quadratic irrational � = a+

p
d

b
is periodic. This expansion can be obtained using the following algorithm.
Multiplying the numerator and the denominator by b, if necessary, we may
assume that bj(d� a2). Let s0 = a, t0 = b and

an =
j
sn+

p
d

tn

k
; sn+1 = antn � sn; tn+1 =

d�s2n+1
tn

for n � 0 (20)

(see [21, Chapter 7.7]). If (sj ; tj) = (sk; tk) for j < k, then

� = [a0; : : : ; aj�1; aj ; : : : ; ak�1]:

Applying this algorithm to quadratic irrationalsr
4c+ 1

c
=

p
c(4c+ 1)

c
and

r
4c

c� 1 =
p
4c(c� 1)
c� 1

we �nd that r
4c+ 1

c
=
�
2; 4c; 4

�
; where (s0; t0) = (0; c) ;

(s1; t1) = (2c; 1) ; (s2; t2) = (2c; c) ; (s3; t3) = (2c; 1)

and r
4c

c� 1 =
�
2; c� 1; 4

�
; where (s0; t0) = (0; c� 1) ;

(s1; t1) = (2 (c� 1) ; 4) ; (s2; t2) = (2 (c� 1) ; c� 1) ; (s3; t3) = (2 (c� 1) ; 4) :

Let pn=qn denote the nth convergent of �: The following result of Worley [23]
and Dujella [5] extends classical results of Legendere and Fatou concerning Dio-
phantine approximations of the form

���� a
b

�� < 1
2b2 and

���� a
b

�� < 1
b2 .

Theorem 4 (Worley [23], Dujella [5]) Let � be a real number and a and b
coprime nonzero integers, satisfying the inequality����� a

b

��� < M

b2
;

where M is a positive real number. Then (a; b) = (rpn+1 � upn; rqn+1 � uqn) ;
for some n � �1 and nonnegative integers r and u such that ru < 2M .
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Explicit versions of Theorem 4 for M = 2; was given by Worley [23, Corol-
lary, p. 206]: Recently, Dujella and Ibrahimpa�íc [6, Propositions 2.1 and 2.2]
extended Worley�s work and gave explicit and sharp versions of Theorem 4 for
M = 3; 4; :::; 12:
We would like to apply Theorem 4 in order to determine all values of �1

with j�1j � 3M1c; M1 2 N, M1 � 4 for which equation (18) has solution and all
values of �2 with j�2j � 3M2 (c� 1) ; M2 2 N; M2 � 5 for which equation (19)
has solutions. We need following lemma (see [8, Lemma 1])

Lemma 5 Let �� be a positive integer which is not a perfect square, and let
pn=qn denotes the nth convergent of continued fraction expansion of

q
�
� . Let

the sequences (sn) and (tn) be de�ned by (20) for the quadratic irrational
p
��
� .

Then

�(rqn+1+uqn)
2��(rpn+1+upn)2 = (�1)n(u2tn+1+2rusn+2� r2tn+2): (21)

Since the period length of the continued fraction expansions of both
q

4c+1
c

and
q

4c
c�1 is equal to 2, according to Lemma 5, we have to consider only the

fractions (rpn+1 + upn)=(rqn+1 + uqn) for n = 0 and n = 1. By checking all
possibilities, it is now easy to prove the following results.

Proposition 6 Let c � 3 (mod 4) ; c � 7 and �1 be an non-zero integer such
that j�1j � 3M1c and such that the equation (18) has a solution in relatively
prime integers V and Z.

i) If c � 35 and M1 = 1 then

�1 2 A1 (c) = f1;�cg :

ii) If c = 15; 19; 23 and M1 = 2 then

�1 2 A1 (c) = f1;�c; 3c+ 1; 1� 5c; 4c+ 1g

iii) If c = 11 and M1 = 3 then

�1 2 A1 (11) = f1;�c; 3c+ 1; 1� 5c; 4c+ 1; 4 + 7c; 4� 9cg
= f1;�11; 34;�54; 45; 81;�95g :

iv) If c = 7 and M1 = 4 then

�1 2 A1 (7) = f1;�c; 3c+ 1; 4c+ 1; 1� 5c; 4 + 7c; 4� 9c; 9� 13cg
= f1;�7; 22;�34; 29; 53;�59;�83;�82g :

Proposition 7 Let c � 3 (mod 4) ; c � 7 and �2 be an non-zero integer such
that j�2j � 3M2 (c� 1) and such that the equation (19) has a solution in rela-
tively prime integers U and Z.
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i) If c � 35 and M2 = 1 then

�2 2 A2 (c) = f�4; c� 1g :

ii) If c = 15; 19; 23 and M2 = 2 then

�2 2 A2 (c) = f�4; c� 1;�3c� 1;�4c; 5c� 9g

iii) If c = 11 and M2 = 3 then

�2 2 A2 (11) = f�4; c� 1;�3c� 1;�4c; 5c� 9;�7c� 9; 9c� 25g
= f�4; 10;�34;�44; 46;�86; 74g :

iv) If c = 7 and M2 = 5 then

�2 2 A2 (7) =
�
�4; c� 1;�3c� 1;�4c; 5c� 9;�7c� 9; 9c� 25;

12c� 16; 13c� 49; 17c� 81; 21c� 121

�
= f�4; 6;�22;�28; 26;�58; 38; 68; 42g

Corollary 8 Let c � 3 (mod 4) ; c � 7:

i) Let (U; V ) be positive integer solution of the equation (12) such that gcd (U; V ) =
d and F1 � 3

2M1cd
2 where M1 = 4 for c = 7; M1 = 3 for c = 11; M1 = 2

for c = 15; 19, 23 and M1 = 1 for c � 35: Then

�2F1 2
�
�1d

2 : �1 2 A1 (c)
	
;

where sets A1 (c) are given in Proposition 6.

ii) Let (U;Z) be positive integer solution of the equation (13) such that gcd (U;Z) =
g and F2 � 3

2M2 (c� 1) g2 where M2 = 5 for c = 7; M2 = 3 for c = 11;
M2 = 2 for c = 15; 19; 23 and M2 = 1 for c � 35: Then

�2F2 2
�
�2g

2 : �2 2 A2 (c)
	
;

where sets A2 (c) are given in Proposition 7.

Proof. Directly from Propositions 6 and 7.

Proposition 9 Let c � 3 (mod 4) ; c � 7: Let (U; V; Z) be positive integer so-
lution of the system of Pellian equations (12) and (13) where gcd (U; V ) = d;
gcd (U;Z) = g and F1; F2 � 40: Then

i)
(�F1;�F2) 2 B (c)�D (c)

where B (c) = B0[ B1 (c), D (c) = D0[ D1 (c) and

B0 = f2; 8; 18; 32g ; D0 = f�2;�8;�18;�32g ;

12



B1 (c) = ; if c � 35; B1 (c) =

�
3c+ 1

2

�
= f35g if c = 23;

B1 (c) =

�
3c+ 1

2
;�2c

�
= f29;�38g if c = 19;

B1 (c) =

�
3c+ 1

2
;�2c; 1� 5c

2

�
if c � 15;

D1 (c) = ; if c � 83; D1 (c) =

�
c� 1
2

�
if 35 � c � 79;

D1 (c) =

�
c� 1
2
;�3c+ 1

2

�
= f�35; 11g if c = 23;

D1 (c) =

�
c� 1
2
;�3c+ 1

2
; 2 (c� 1) ;�2c

�
= f�38;�29; 9; 36g if c = 19;

D1 (c) =

�
c� 1
2
;�3c+ 1

2
; 2 (c� 1) ;�2c; 5c� 9

2

�
=

= f�30;�23; 7; 28; 33g if c = 15;

D1 (c) =

�
c� 1
2
;�3c+ 1

2
; 2 (c� 1) ;�2c; 5c� 9

2
;
9c� 25
2

�
= f�22;�17; 5; 20; 23; 37g if c = 11;

D1 (c) =

�
c�1
2 ;�

3c+1
2 ; 2 (c� 1) ;�2c; 5c�92 ;

9
2 (c� 1) ;�

7c+9
2 ; 9c�252 ; 13c�492 ; 6c� 8

�
=

= f�29;�14;�11; 3; 12; 13; 19; 21; 27; 34g if c = 7:

ii) Additionally, if F1F2 � 40; then (�F1;�F2) 2 S (c) where S (c) = S0 [
S1 (c) and

S0 = f(2;�2) ; (2;�8) ; (2;�18) ; (8;�2) ; (18;�2)g

S1 (c) = ; for c � 83;

S1 (c) =

��
2;
c� 1
2

��
for 15 � c � 79;

S1 (c) = f(2; 5) ; (2;�17) ; (2; 20) ; (8; 5) ; (17;�2)g for c = 11;

S1 (c) =

�
(2; 3) ; (2;�11) ; (2;�14) ; (2; 12) ; (2; 13) ; (2; 19) ;
(8; 3) ; (11;�2) ; (11; 3) ; (�14;�2) ; (�17;�2)

�
for c = 7;

Proof.
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i) From Proposition 3 and Corollary 8 we have �2F1 2
�
�1d

2 : �1 2 A1 (c)
	

and �2F2 2
�
�2g

2 : �2 2 A2 (c)
	
where sets A1 (c) and A2 (c) are given

in Propositions 6.and 7, respectively. Therefore,

a) For all c � 7 we have �2F1 = d2; �cd2. Additionally, we have �2F1 =
(3c+ 1) d2; (1� 5c) d2; (4c+ 1) d2 if c � 23, �2F1 = (4 + 7c) d2,
(4� 9c) d2if c = 11; 7 and �2F1 = (1� 12c) d2; (9� 13c) d2; i.e.
�2F1 = �83d2; �82d2 if c = 7. Since F1 � 40; we obtain:

i. F1 = d2

2 � 40 implies d = 2; 4; 6; 8; i.e. �F1 = 2; 8; 18; 32;
ii. F1 = cd2

2 � 40 implies d � 4
p
5p
c
� 4

p
5p
7
< 4 and d is even, i.e.

d = 2: Thus, �F1 = �2c for c � 19 since F1 = 2c > 40 if c � 23;
iii. F1 =

(3c+1)d2

2 � 40 implies d � 4
p
5p

3c+1
� 4

p
5p

3�7+1 < 2; i.e.

d = 1. Thus, �F1 = 3c+1
2 for c � 23;

iv. F1 =
(5c�1)d2

2 � 40 implies d � 4
p
5p

5c�1 � 4
p
5p

5�7�1 < 2; i.e.

d = 1. Thus, �F1 = 1�5c
2 for c � 15;

v. F1 =
(4c+1)d2

2 � 40 implies d � 4
p
5p

4c+1
� 4

p
5p

3�7+1 < 2 and d is
even, i.e. there is no solution;

vi. F1 =
(7c+4)d2

2 � 40 implies d � 4
p
5p

7c+4
� 4

p
5p

7�7+4 < 2 and d is
even, i.e. there is no solution;

vii. F1 =
(9c�4)d2

2 � 40 implies d � 4
p
5p

9c�4 � 4
p
5p

9�7�4 < 2 and d is
even, i.e. there is no solution;

viii. F1 = 83d2

2 � 40 implies d < 1, i.e. there is no solution.
ix. F1 = 82d2

2 � 40 implies d < 1, i.e. there is no solution.
Therefrom, we obtain sets B (c).

b) For all c � 7 we have �2F2 = �4g2; (c� 1) g2. Additionally, we
have �2F2 = � (3c+ 1) g2; �4cg2; (5c� 9) g2 if c � 23, �2F2 =
(�7c� 9) g2; (9c� 25) g2 if c � 11 and�2F1 = (12c� 16) g2; (13c� 49) g2;
i.e. �2F1 = 68g2; 42g2 if c = 7. Since F2 � 40; we obtain
i. F2 = 2g2 � 40 implies g = 1; 2; 3; 4, i.e. �F2 = �2;�8;�18;�32;
ii. F2 = c�1

2 g
2 � 40 implies g � 4

p
5p
c�1 �

4
p
5p
7
< 4, i.e. g = 1; 2; 3.

Thus, we have �F2 = c�1
2 if c � 79, �F2 = 2 (c� 1) if c � 19

and �F2 = 9
2 (c� 1) = 27 if c = 7;

iii. F2 = 3c+1
2 g2 � 40 implies g � 4

p
5p

3c+1
� 4

p
5p

3�7+1 < 2; i.e. g = 1:

Thus, we have �F2 = � 3c+1
2 for c � 23;

iv. F2 = 2cg2 � 40 implies g � 2
p
5p
c
� 2

p
5p
7
< 2; i.e. g = 1: Thus, we

have �F2 = �2c if c � 19;
v. F2 = 5c�9

2 g2 � 40 implies g � 4
p
5p

5c�9 � 4
p
5p

5�7�9 < 2; i.e. g = 1:

Thus, we have �F2 = 5c�9
2 if c � 15;
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vi. F2 = 7c+9
2 g2 � 40 implies g � 4

p
5p

7c+9
� 4

p
5p

7�7+9 < 2; i.e. g = 1:

Thus, we have �F2 = � 7c+9
2 if c = 7;

vii. F2 = 9c�25
2 g2 � 40 implies g � 4

p
5p

9c�25 � 4
p
5p

9�7�25 < 2; i.e.

g = 1: Thus, we have �F2 = 9c�25
2 if c � 11;

viii. F2 = (6c� 8) g2 = 34g2 � 40 implies g = 1. Thus, we have
�F2 = 34 if c = 7;

ix. F2 = 13c�49
2 g2 = 21g2 � 40 implies g = 1. Thus, we have

�F2 = 21 if c = 7;
Therefrom, we get sets D (c).

ii) Directly from i) since S (c) = f(s; t) 2 B (c)�D (c) : jsj � jtj � 40g :

If system (12), (13) and (14) has solution for some positive integers F1; F2;
F3; F1F2F3 � 40, then (�F1;�F2) 2 S (c) ; where set S (c) is given in Proposi-
tion 9 and triple (�F1;�F2;�F3) satis�es one of the equations in (16). First, for
each pair (�F1;�F2) 2 S (c) we check if there exist F3 2 N; F1F2F3 � 40 such
that any of the equations (16) holds. For all pairs of the form (�F1;�F2) = (s; t)
condition F1F2F3 � 40 is satis�ed if F3 2 F (s; t) =

n
k 2 N : k � 40

jsjjtj

o
: There-

fore, for each pair (s; t) 2 S (c) and for each k 2 F (s; t), we have to check if any
of these four equations

s (c� 1) + t (4c+ 1) = �kc or s (c� 1)� t (4c+ 1) = �kc (22)

holds. For example, (�F1;�F2) = (2;�2) 2 S (c) for all c � 7: From (22) we
obtain

�6c� 4 = �F3c or 10c = �F3c:

Since F3 2 F (2;�2) = fk 2 N : k � 10g the only possibility is �F3 = 10:
Furthermore, (�F1;�F2) = (2;�8) 2 S (c) for all c � 7: From (22) we obtain

�30c� 10 = �F3c or 34c+ 6 = �F3c;

which implies a contradiction if F3 2 F (2;�8) = f1; 2g : We proceed similarly
for all elements of S (c). The only triple we obtain on this way is (�F1;�F2;�F3) =
(2;�2; 10) and the corresponding system is

(4c+ 1)U2 � cV 2 = 4 (23)

(c� 1)U2 � 4cZ2 = �4 (24)

4 (4c+ 1)Z2 � (c� 1)V 2 = 20: (25)

Since this system has solution (U; V; Z) = (�2;�4;�1) ; we have � (c) = 40 for
all c � 3 (mod 4) ; c � 7:
Next step is �nding all elements with minimal index. Therefore we have to

solve the above system.
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If c = 3 and (�2F1;�2F2;�2F3) = (10; 2;�2), then system (12), (13) and
(14) has solutions (U; V; Z) = (�1;�1; 0) which implies that � (3) � 5: There-
fore, if we suppose that F1F2F3 � 5 and use the same procedure as for the case
c � 7, we obtain that the only possibility is (�F1;�F2;�F3) = (5; 1;�1) and
the corresponding system is

13U2 � 3V 2 = 10 (26)

U2 � 6Z2 = 1 (27)

V 2 � 26Z2 = 1: (28)

This system has solutions (U; V; Z) = (�1;�1; 0) which implies that � (3) = 5:
In [1] Anglin showed that system (27) and (28) has only the trivial solutions
(U; V; Z) = (�1;�1; 0) : Now using (15), we �nd that all integral elements with
minimal index are given by (x2; x3; x4) = � (�1; 0; 1) ; � (0; 0; 1) :

3.2 Case c � 2 (mod 4)
For all c � 2 (mod 4), c � 14; in similar way, we obtain that the only solvable
system of the form (7), (8) and (9) with F1F2F3 � 80 is

(c� 1)V 2 � cU2 = �4; (29)

(4c+ 1)V 2 � cZ2 = 4; (30)

(4c+ 1)U2 � (c� 1)Z2 = 20: (31)

Since this system has solution (U; V; Z) = (�2;�2;�4) ; we have � (c) = 80
for all c � 2 (mod 4) ; c � 14: In order to �nd all elements with minimal index,
we have to �nd all solutions to the system (29), (30) and (31).

Therefore, we have proved statement ii) of Theorem 1.

4 Finding all elements with minimal index

Now, we have to solve systems that are obtained in Section 3. These systems
are very suitable for application of method given in [7]. We will prove following
result

Theorem 10 i) Let c � 2 (mod 4), c � 14 be an integer. The only solutions
to system (29), (30) and (31) are (U; V; Z) = (�2;�2;�4) :

ii) Let c � 3 (mod 4), c � 7 be an integer. The only solutions to system (23),
(24) and (25) are (U; V; Z) = (�2;�4;�1) :

Therefrom we have following corollary which �nishes the proof of Theorem
1.
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Corollary 11 Let c � 7 be positive integer such that c; 4c+1; c�1 are square-
free integers relatively prime in pairs. Then all integral elements with minimal

index in the �eld Kc = Q
�p

(4c+ 1) c;
p
c (c� 1)

�
are given by:

i) (x2; x3; x4) = � (1;�1; 2) ;� (3;�1;�2) if c � 3 (mod 4) ;

ii) (x2; x3; x4) = � (�2; 1; 2) ; � (�2; 3;�2) if c � 2 (mod 4) ;

Proof.

i) Let c � 3 (mod 4), c � 7: Since all solutions of the system (23), (24) and
(25) are given by (U; V; Z) = (�2;�4;�1) and since in this case we have
U = x4; V = 2x2 + x4; Z = x3, we obtain

x4 = �2; 2x2 + x4 = �4; x3 = �1;

which implies (x2; x3; x4) = (1;�1; 2) ; (3;�1;�2) ; (�1;�1;�2) ; (�3;�1; 2) :

ii) Let c � 2 (mod 4). Since all solutions of the system (29), (30) and (31)
are given by (U; V; Z) = (�2;�2;�4) and since in this case we have U =
x4; V = x2; Z = 2x3 + x4, we obtain

x4 = �2; x2 = �2; 2x3 + x4 = �4;

which implies (x2; x3; x4) = (�2; 1; 2) ; (�2;�1;�2) ; (�2; 3;�2) ; (�2;�3; 2) :

Observe that if c � 2 (mod 4) and (U; V; Z) is a solution to system (29), (30)
and (31), then all integers U; V; Z are even. Let Z = 2Z1. Then system (29)
and (30) is equivalent to the system

(c� 1)V 2 � cU2 = �4; (32)

(4c+ 1)V 2 � 4cZ21 = 4: (33)

If c � 3 (mod 4) and (U; V; Z) is a solution to system (23), (24) and (25),
then integers U; V are even. Let Z2 = 2Z, V = 2V2. Then system (23) and (24)
is equivalent to the system

(c� 1)U2 � cZ22 = �4; (34)

(4c+ 1)U2 � 4cV 22 = 4: (35)

Therefore, in order to prove Theorem 10 it is enough to analyze system (2)
and (3), where c � 7 and prove the following theorem:

Theorem 12 Let c � 2 be an integer. Then the only solutions to system of
Pellian equations (2) and (3) are (X;Y; T ) = (�2;�2;�2) :
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In order to prove Theorem 12, �rst we will �nd a lower bound for solutions of
this system using the "congruence method" introduced in [9]. The comparison
of this lower bound with an upper bound obtained from a theorem of Bennett
[4] on simultaneous approximations of algebraic numbers �nishes the proof for
c � 89037. For c � 89036 we use a theorem a Baker and Wüstholz [3] and a
version of the reduction procedure due to Baker and Davenport [2].

Lemma 13 Let (X;Y; T ) be positive integer solution of the system of Pellian
equations (2) and (3). Then there exist nonnegative integers m and n such that

X = vm = wn;

where the sequences (vm) and (wn) are given by

v0 = 2; v1 = 8c� 2; ; vm+2 = 2 (2c� 1) vm+1 � vm; m � 0 (36)

and

w0 = 2; w1 = 32c+ 2; wn+2 = 2 (8c+ 1)wn+1 � wn; n � 0: (37)

Proof. Let Y1 = cY; T1 = 2cT; then system (2) and (3) is equivalent to system

Y 21 � c (c� 1)X2 = 4c; (38)

T 21 � c (4c+ 1)X2 = �4c: (39)

Since
p
c (4c+ 1) =

�
2c; 4; 4c

�
and

p
c (c� 1) =

h
c� 1; 2; 2 (c� 1)

i
we �nd that

fundamental solutions of equations

A2 � c (c� 1)B2 = 1; (40)

D2 � c (4c+ 1)B2 = 1; (41)

are given by a1 + b1
p
c (c� 1) = 2c � 1 + 2

p
c (c� 1); a2 + b2

p
c (4c+ 1) =

8c + 1 + 4
p
c (4c+ 1), respectively. By [19, Theorem 108], it follows that if

u0 + v0
p
c (c� 1) is the fundamental solution of the class C of equation (38),

than inequalities

0 < ju0j �
r
1

2
(a1 + 1) � 4c =

r
1

2
(2c� 1 + 1) 4c = 2c;

0 � v0 �
b1p

2 (a1 + 1)

p
4c =

2p
2 (2c� 1 + 1)

p
4c = 2

must hold. This implies that

u0+v0
p
c (c� 1) = 2c+2

p
c (c� 1) and u00+v

0
0

p
c (c� 1) = �2c+2

p
c (c� 1)

are possible fundamental solution of equation (38). Since

u0u
0
0 � c (c� 1) v0v00(mod 4c) and u0v

0
0 � u00v0(mod 4c);
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these solutions belong to the same class (see [19, Chapter VI, 58.]), so we have
only one fundamental solution u0 + v0

p
c (c� 1) = 2c+ 2

p
c (c� 1). Similarly,

by [19, Theorem 108a], we �nd that if s0 + w0
p
c (4c+ 1) is the fundamental

solution of the class C of equation (39), than inequalities

0 � js0j �
r
1

2
(a1 � 1) � 4c =

r
1

2
(8c+ 1� 1) 4c = 4c;

0 < w0 �
b2p

2 (a1 � 1)
p
4c =

4p
2 (8c+ 1� 1)

p
4c = 2:

must hold. This implies that

s0+w0
p
c (4c+ 1) = 4c+2

p
c (4c+ 1) and s0+w0

p
c (4c+ 1) = �4c+2

p
c (4c+ 1)

are possible fundamental solution of equation (38). Since

s0s
0
0 � c (4c+ 1)w0w00(mod 4c) and s0w

0
0 � s00w0(mod 4c);

these solutions belong to the same class, therefore we have only one fundamental
solution s0 + w0

p
c (4c+ 1) = 4c + 2

p
c (c� 1). Now, the theory of Pellian

equations guarantees that all solutions of (2) and (3) are given by (36) and (37),
respectively.
Therefore, in order to prove Theorem 12, it su¢ ces to show that vm = wn

implies m = n = 0.
Solving recurrences (36) and (37) we �nd

vm=
1p
c� 1

h
(
p
c+

p
c� 1)

�
2c� 1 + 2

p
c(c� 1)

�m
�(
p
c�

p
c� 1)

�
2c� 1� 2

p
c(c� 1)

�mi
; (42)

wn=
1p
4c+ 1

h
(2
p
c+

p
4c+ 1)

�
8c+ 1 + 4

p
c(4c+ 1)

�n
�(2

p
c�

p
4c+ 1)

�
8c+ 1� 4

p
c(4c+ 1)

�ni
: (43)

4.1 Congruence relations

Now, we will �nd a lower bound for nontrivial solutions using the "congruence
method".

Lemma 14 Let the sequences (vm) and (wn) be de�ned by (36) and (37). Then
for all m;n � 0 we have

vm�(�1)m�1 (4m(m+ 1)c� 2) (mod 32c2); (44)

wn�16n(n+ 1)c+ 2 (mod 512c2): (45)
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Proof. Both relations are obviously true for m;n 2 f0; 1g.
Assume that (44) is valid for m� 2 and m� 1. Then

vm=2 (2c� 1) vm�1 � vm�2
�2 (2c� 1) [(�1)m�2 (4 (m� 1)mc� 2)]� [(�1)m�3 (4(m� 2)(m� 1)c� 2)]
�(�1)m�1 [�16c2m (m� 1) + 4cm (m+ 1)� 2]
=(�1)m�1 (4m(m+ 1)c� 2) (mod 32c2):

Assume that (45) is valid for n� 2 and n� 1. Then

wn= 2 (8c+ 1)wn�1 � wn�2
�2 (8c+ 1) [16n(n� 1)c+ 2]� [16 (n� 1) (n� 2)c+ 2]
�16cn2 + 16cn+ 2
=[16n(n+ 1)c+ 2] (mod 512c2):

Suppose that m and n are positive integers such that vm = wn. Then, of
course, vm � wn (mod 32c2). By Lemma 14, we have (�1)m � 1 (mod 2c) and
therefore m is even.
Assume that m(m + 1) < 8

5c. Since n � m we also have n(n + 1) < 8
5c.

Furthermore, Lemma 14 implies

�4m(m+ 1)c+ 2 � 16n(n+ 1)c+ 2 (mod 32c2)

and

�m(m+ 1)
2

� 2n(n+ 1) (mod 4c): (46)

Consider the positive integer

A = 2n(n+ 1) +
m(m+ 1)

2
:

We have 0 < A < 4c and, by (46), A � 0(mod 2c), a contradiction.
Hence m(m+ 1) � 8

5c and it implies m >
p
1:6c� 0:5. Therefore we proved

Proposition 15 If vm = wn and n 6= 0, then m >
p
1:6c� 0:5:

4.2 An application of a theorem of Bennett

It is clear that the solutions of the system (38) and (39) induce good rational
approximations to the numbers

�1 =

r
c� 1
c

and �2 =

r
4c+ 1

4c
:

More precisely, we have
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Lemma 16 All positive integer solutions (X;Y; T ) of the system of Pellian
equations (38) and (39) satisfy

j�1 �
Y

X
j< 4p

c (c� 1)
�X�2 ;

j�2 �
T

X
j< 1

c
�X�2:

Proof. We have�����
r
c� 1
c
X + Y

����� �12
 �����
r
c� 1
c
X + Y

�����+
�����
r
c� 1
c
X � Y

�����
!
� 1

2

�����2
r
c� 1
c
X

�����
= X

r
c� 1
c
;

which implies �����
r
c� 1
c

� Y

X

�����=
�����c� 1c � Y 2

X2

����� �
�����
r
c� 1
c

+
Y

X

�����
�1

<
4

cX2
�
r

c

c� 1 =
4p

c (c� 1)
�X�2

Similarly, �����T +
r
4c+ 1

4c
X

����� � X
r
1 +

1

4c
� X;

implies�����
r
4c+ 1

4c
� T

X

�����=
�����4c+ 14c

� T 2

X2

����� �
�����
r
4c+ 1

4c
+
T

X

�����
�1

<
4

4cX2
� 1

c
�X�2:

The numbers �1 and �2 are square roots of rationals which are very close to
1. For simultaneous Diophantine approximations to such kind of numbers there
are very useful e¤ective results of Masser and Rickert [18] and Bennett [4]. We
will use the following theorem of Bennett [4, Theorem 3.2].

Theorem 17 If ai, pi, q and N are integers for 0 � i � 2, with a0 < a1 < a2,
aj = 0 for some 0 � j � 2, q nonzero and N > M9, where

M = max
0�i�2

fjaijg � 3;

then we have

max
0�i�2

n���r1 + ai
N
� pi
q

���o > (130N
)�1q��
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where

� = 1 +
log(32:04N
)

log
�
1:68N2

Q
0�i<j�2(ai � aj)�2

�
and


 =

(
(a2�a0)2(a2�a1)2

2a2�a0�a1 if a2 � a1 � a1 � a0;
(a2�a0)2(a1�a0)2

a1+a2�2a0 if a2 � a1 < a1 � a0:

We will apply Theorem 17 with a0 = �4, a1 = 0, a2 = 1, N = 4c, M = 4,
q = X, p0 = Y , p1 = X, p2 = T . If c � 65 537, then the condition N > M9 is
satis�ed and we obtain

(130 � 4c � 400
9
)�1X�� <

4p
c (c� 1)

�X�2 : (47)

If c � 84762 then 2� � > 0 and (47) implies

logX <
11: 782

2� � : (48)

Furthermore,

1

2� � =
1

1� log(5696c)
log(0:0672 c2)

<
log
�
0:0672c2

�
log(0:000011797c)

:

On the other hand, from (43) we �nd that

wn >
�
2c� 1 + 2

p
c(c� 1)

�m
> (4c� 3)m;

and Proposition 15 implies that if (m;n) 6= (0; 0), then

X > (4c� 3)
p
1:6c�0:5 :

Therefore,
logX > (

p
1:6c� 0:5) log(4c� 3): (49)

Combining (48) and (49) we obtain

p
1:6c� 0:5 <

11:782 log
�
0:0672 c2

�
log(4c� 3) log(0:000011797c) (50)

and (50) yields to a contradiction if c � 89037. Therefore we proved

Proposition 18 If c is an integer such that c � 89037, then the only solution
of the equation vm = wn is (m;n) = (0; 0).

22



4.3 The Baker-Davenport method

In this section we will apply so called Baker-Davenport reduction method in
order to prove Theorem 12 for 2 � c � 89036.

Lemma 19 If vm = wn and n 6= 0, then

0 < m log
�
2c� 1 + 2

p
c(c� 1)

�
� n log

�
8c+ 1 + 4

p
c(4c+ 1)

�
+ log

p
4c+ 1(

p
c+

p
c� 1)p

c� 1(2
p
c+

p
4c+ 1)

< 0:313 74
�
8c+ 1 + 4

p
c(4c+ 1)

��2n
:

Proof. In standard way (for e.g. see [7, Lemma 5])
Now we will apply the following theorem of Baker and Wüstholz [3]:

Theorem 20 For a linear form � 6= 0 in logarithms of l algebraic numbers
�1; : : : ; �l with rational integer coe¢ cients b1; : : : ; bl we have

log � � �18(l + 1)! ll+1(32d)l+2h0(�1) � � �h0(�l) log(2ld) logB ;

where B = maxfjb1j; : : : ; jbljg, and where d is the degree of the number �eld
generated by �1; : : : ; �l.

Here
h0(�) =

1

d
max fh(�); j log �j; 1g ;

and h(�) denotes the standard logarithmic Weil height of �.
We will apply Theorem 20 to the form from Lemma 19. We have l = 3,

d = 4, B = m,

�1 = 2c� 1 + 2
p
c(c� 1); �2 = 8c+ 1 + 4

p
c(4c+ 1);

�3 =

p
4c+ 1(

p
c+

p
c� 1)p

c� 1(2
p
c+

p
4c+ 1)

:

Under the assumption that 2 � c � 89036 we �nd that

h0(�1) =
1

2
log�1 <

1

2
log 4c; h0(�2) =

1

2
log�2 < 7:0848:

Furthermore, �3 < 1:242 7, and the conjugates of �3 satisfy

j�03j =
p
4c+ 1(

p
c�

p
c� 1)p

c� 1(2
p
c+

p
4c+ 1)

< 1;

j�003 j =
p
4c+ 1(�

p
c+

p
c� 1)p

c� 1(2
p
c�

p
4c+ 1)

< 7:242 7

j�0003 j =
p
4c+ 1(

p
c� 1 +

p
c)(
p
4c+ 1 + 2

p
c)p

c� 1
< 1424583:1:
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Therefore,

h0(�3) <
1

4
log
h
(c� 1)2 � 1:2427 � 7: 242 7 � 1424583:1

i
< 9: 7901:

Finally,

log
h
0:313 74

�
8c+ 1 + 4

p
c(4c+ 1)

��2n i
< �2n log(4c) :

Hence, Theorem 20 implies

2n log(4c) < 3:822 � 1015 � 1
2
� log(4c) � 7:0848: � 9:7901 logm

and
n

logm
< 6: 6275 � 1016: (51)

By Lemma 19, we have

m log
�
2c� 1 + 2

p
c(c� 1)

�
< n log(8c+ 1 + 4

p
c(4c+ 1)) + 2: 718 8� 10�4

< n log
h
(8c+ 1 + 4

p
c(4c+ 1)) � 1: 000 4

i
and

m

n
< 2: 000 3 (52)

Combining (51) and (52), we obtain

m

logm
<
2: 000 3 � n
log n

< 2: 000 3 � 6: 6275 � 1016 < 1: 325 8� 1017

which implies m < 5:7264� 1018:
Wemay reduce this large upper bound using a variant of the Baker-Davenport

reduction procedure [2]. The following lemma is a slight modi�cation of [9,
Lemma 5 a)]:

Lemma 21 Assume that M is a positive integer. Let p=q be a convergent of the
continued fraction expansion of � such that q > 10M and let " = k�qk�M �k�qk,
where k � k denotes the distance from the nearest integer. If " > 0, then there is
no solution of the inequality

0 < m� n�+ � < AB�n

in integers m and n with

log(Aq=")

logB
� n �M :
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We apply Lemma 21 with

� =
log�2
log�1

; � =
log�3
log�1

; A =
0:313 74

log�1
;

B =
�
8c+ 1 + 4

p
c(4c+ 1)

�2
and M = 5:7264� 1018:

If the �rst convergent such that q > 10M does not satisfy the condition " > 0,
then we use the next convergent.
We performed the reduction from Lemma 21 for 2 � c � 89036. The use

of the second convergent was necessary in 3249 cases (� 3:65%), the third
convergent was used in 63 cases (� 0:08%), the forth in 14 cases, the �fth in 2
cases and seventh convergent is used in only one case: c = 69953. In all cases we
obtained n � 6. More precisely, we obtained n � 6 for c � 2; n � 5 for c � 4;
n � 4 for c � 6; n � 3 for c � 24; n � 2 for c � 256; n � 1 for c � 74211. The
next step of the reduction in all cases gives n � 1, which completes the proof.
Therefore, we proved

Proposition 22 If c is an integer such that 2 � c � 89036, then the only
solution of the equation vm = wn is (m;n) = (0; 0).

Proof of Theorem 12. The statement follows directly from Propositions
18 and 22.
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