Solving index form equations in the two

parametric families of biquadratic fields

BORKA JADRIJEVIC*

Abstract

In this paper we find minimal index and determine all integral elements
with minimal index in the two families of totally real bicyclic biquadratic

fields of the form K. = Q (\/(c —2)c,1/(c+2) c) and of the form L. =

Q(\/(C—Z)C,\/(C+4)C).

1 Introduction

Consider an algebraic number field K of degree n with ring of integers Og. It
is a classical problem in algebraic number theory to decide if K admits power
integral bases, that is, integral bases of the form {17 Q... a"_l}. If there exist
power integral bases in K, then Ok is simple ring extension Z [«] of Z and it is
called monogenic.

Let a € Ok be a primitive element of K, that is K = Q(«). Index of « is
defined by

I(a)= [(’)} : Z[a]+] )

where O} and Z [a]+ respectively denote the additive groups of Ok and the
polynomial ring Z[a]. Therefore, the primitive element o € Ok generates a
power integral basis if and only if I (o) = 1. The minimal index p (K) of K is
the minimum of the indices of all primitive integers in the field K. The greatest
common divisor of indices of all primitive integers of K is called the field index
of K, and will be denoted by m (K). Monogenic fields have both p (K) = 1 and
m (K) =1, but m (K) =1 is not sufficient for the mongenity.
For any integral basis {1,wa, ...,w, } of K let

LiX)=X1+i?Xo+ . +w®X,, i=1,..n,
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where superscripts denote the conjugates. Then

[[ @) -1;(X)" = (Xe,.... X0))* D,

1<i<j<n

where Dk denotes the discriminant of K and I (Xs,...,X,) is a homogenous
polynomial in n — 1 variables of degree n (n — 1) /2 with rational integer coef-
ficients. This form is called the index form corresponding to the integral basis
{1,ws, ...,wn }. It can be shown that if the primitive integer o € Ok is repre-
sented by an integral basis as o = x1 4+ Taows + ... + T,wW,, then the index of
a is just I (a) = |I (x2,...,25)|. Consequently, the minimal y € N for which
the equation I (z3,...,x,) = £ is solvable in za, ..., z,, € Z is a minimal index
p(K).

Biquadratic fields K = Q(y/m,+/n) (where m, n are distinct square-free
integers) were considered by several authors. K. S. Williams [23] gave an ex-
plicit formula for integral basis and discriminant of these fields. Necessary and
sufficient conditions for biquadratic fields being monogenic where given by M.
N. Gras and F. Tanoe [16]. T. Nakahara [20] proved that infinitely many fields
of this type are monogenic but the minimal index of such fields can be arbitrary
large. I. Gadl, A. Pethé and M. Pohst [15] gave an algorithm for determin-
ing minimal index and all generators of integral bases in the totally real case by
solving systems of simultaneous Pellian equations. G. Nyul [19] gave a complete
characterization of power integral bases in the monogenic totally complex fields
of this type. In [18] we have determined a minimal index and all elements with
minimal index for infinite family of totally real bicyclic biquadratic fields of the

form K = Q (\/(40 +1)e,/(c—1) c) using theory of continued fractions. In

the present paper, we will do the same for the two infinite families of totally
real bicyclic biquadratic fields of the form

K. =Q(Vie=2)e,v/elc+2) = (1)
Q(Vier2) (-2 vele—2) =Q(Vie+2) -2, V(e +2)¢)

and of the form

Lo=Q(Vie=2)e,v/ele+ 1) = 2)
Q(VieH D=2, Vee—2)) =Q(Vie+ 9 c—2), Vie+ae).

The main results of the present paper are given the following theorems:

Theorem 1 Let ¢ > 3 be an odd positive integer such that ¢, ¢ — 2, ¢+ 2 are
square-free integers. Then (1) is totally real bicyclic biquadratic field and

i) its field index is m (K.) = 1 for all ¢;

ii) the minimal index of K. is p (K.) = 4;



iii) all integral elements with minimal index are given by

)+x3\/c(c—2)+\/c(c+2) +x41+ ((:—2)(c—|—2)7

2 2

1+ xa/c(c—2

where x1 € Z and (x2,x3,24) = £(0,+1,1),+(1,1,-1),+(-1,-1,1).

Theorem 2 Let ¢ > 3 be an odd positive integer such that ¢, ¢ — 2, ¢+ 4 are
square-free integers relatively prime in pairs. Then (2) is totally real bicyclic
biquadratic field and

i) its field index is m (L.) =1 for all ¢;
ii) the minimal index of L. is p(Le) =12 if ¢ > 7 and pu(Le) =1 if ¢ = 3;

iii) all integral elements with minimal index are given by

-2 4 -2 1 4
z1+z2/ (¢ — 2) (c +4)+as VACEDICE: 2) + ke )C+334 i 62(6 - )7
where x1 € Z, (x2,23,24) = £(0,1,1),+£(0,1,-1),+(1,-1,-1),£(1,—-1,1)
if ¢ > 7 and (v2,x3,74) = £(—1,1,0),£(0,1,0) if ¢ = 3.

2 Preliminaries

Let m, n be distinct square-free integers, | = ged (m,n) and define mq, ny by
m = lmi, n = Iny. Under these conditions the quartic field K = Q (v/m,v/n)
has three distinct quadratic subfields, namely Q (v/m), Q (v/n), Q (\/m ) and
Galois group V4 (the Klein four group). These fields have very nice special
structure.

Integral basis and discriminant of K was described K.S. Williams [23] in
terms in terms of m, n, m1,n1, [. He distinguished five cases according to the
congruence behavior of m, n, my, ny modulo 4. In [13], I. Gasl, A. Peth and
M. Pohst described the corresponding index forms I (z3,x3,x4). They showed
that in all five cases index form is a product of three quadratic factors. For
Z2,x3,x4 € Z the quadratic factors of the index form admit integral values. If
we fix the order of the factors in index form and if we denote the absolute value
of the first, second and third factor by Fy = F} (22,23, 24), Fo = F5 (22, 23,24),
F5 = F3 (22,23, 14), respectively, then finding the minimal index p (K) is equiv-
alent to find integers x5, x3, x4 such that the product F} F5 F3 is minimal. It can
be easily shown that +F;, +F5, £F3 are not independent, i.e. that they are
related, according to five possible cases, by relations given in [15, Lemma 1].
Biquadratic field K = Q (y/m, y/n) is totally complex or totally real (there are
no mixed fields of this type). In the totally real case the index form is the
product of tree factors Fy, Fs, F3, of "Pellian type". In this case I. Gaal, A.
Pethd and M. Pohst [15] gave following algorithm for finding the minimal index
and all elements with minimal index. Consider system of equations obtained by



equating the first quartic factor of the index form with +F; and second factor
with +F5. The system of these two equations can be written as

Az®> — By’ =C (3)
Dz? - Fz*=G in wz,y,z € Z, (4)

where the values of A, B,C, D, F,G and the new variables z,y, z, according to
five possible cases, are listed in the table (see [15, p. 104]). In each particular
case, first we find the field index m (K) which we can easy calculate from [13,
Theorem 4]. We proceed with 4 = v-m (K) (v =1,2,...). For each such pu
we try to find positive integers Fy, F», F5 with p = FyFyF3 satisfying the
corresponding relation of [15, Lemma 1]. If there exist such Fy, F5, F3, then we
calculate all such triples. For each such triple we determine all solutions of the
corresponding system (3) and (4). If none of these systems of equations have
solutions, then we proceed to the next v, otherwise p is the minimal index and
collecting all solutions of systems of equations corresponding to valid factors F7,
Fy, Fs3 of 1 we get all solutions of equation

I($2,$3,.’E4) = :l:/lfa

i.e. we obtain all integral elements with minimal index in K.

3 Minimal index of the field K.

Let ¢ > 3 be positive integer such that ¢,c— 2, ¢+ 2 are square-free integers rel-
atively prime in pairs. Let m = mql, n = nyl where my,n1,l € {¢,c —2,c+ 2}
are distinct integers. Then field (1) is totally real bicyclic biquadratic field.

First note that if ¢,c — 2,c + 2 are integers relatively prime in pairs, than
¢ is an odd positive integer. Furthermore, by [10], there are infinitely many
positive integers ¢ for which ¢ (¢ — 2) (¢ + 2) is square-free integer. Therefore,
there are infinitely many positive integers ¢ for which ¢, c—2, c+2 are square-free
integers relatively prime in pairs, which again implies that there are infinitely
many totally real bicyclic biquadratic fields of the form (1).

In order to prove Theorem 1 will use a method of I. Gadl, A. Peth6 and M.
Pohst [15] given in previous section. Let ny = ¢ —2, m; =c+2 and [ = ¢. We
have to observe following cases:

i) If ¢ = 1(mod4), then ny = 3 (mod4), m; = 3(mod4), I
which implies m = m1l = 3 (mod 4) and n = nql = 3 (mod 4);

b

= 1(mod4)
ii) If ¢ = 3(mod4), then n; = 1(mod4), m; = 1(mod4), | = 3 (mod4)
which implies m = myl = 3 (mod 4) and n = nyl = 3 (mod 4).

Since, in both cases, we have (m,n) = (3,3) (mod 4), by equating the first,
second and third quartic factor of the corresponding index form with +Fy,



+F5 and +Fj3, respectively, according to [15], we obtain the system

cU? —(c—2)V2=+F (5)
cZ? —(c+2)Vi=+F, (6)
(c—2)Z% — (c+2)U? = +4F3, (7)
where
U:2$2 + 24, V:IZ'4, Z:IZ?g, (8)

and from [15, Lemma 1] we have that
+(c+2)Fi £ (c—2) Fy = +4cFy (9)

must hold. In this case the integral basis of K, is

{1, JeeT T, \/C(c-l—?)—;—\/c(c—Q)’ 1+\/(c—22)(c+2)}

and its discriminant is D, = (4¢(c — 2) (c + 2))2.

Now we will prove statement i) of Theorem 1. First we form differences
d1 :ml—l, dg :nl—l, d3 = m; —nNi. Wehaved1 :2, d2 = —2, d3 = 4.
Since neither 3 nor 4 divides all three differences dy, da, ds, according to [13,
Theorem 4], we conclude m (K,.) = 1.

Now we will formulate our strategy of searching the minimal index p (K.) =:
i (c) and all elements with minimal index. Finding of minimal index pu (¢) is
equivalent to finding system of above form with minimal product F} F5 F3 which
has solution.

Observe that if (£Fy, £F5, +F3) = (2,-2,1), then system (5), (6) and (7)
has solutions (U,V, Z) = (£1,£1,£1) which implies that p(c) < 4 for all ¢ =
1,3 (mod4).

For ¢ = 3 and ¢ = 5 we have discriminant Dy, < 10°. In [15] L. Gadl, A.
Pethd and M. Pohst determined the minimal indices and all elements with mini-
mal index in all 196 fields and totally real bicyclic biquadratic fields with discrim-
inant < 10°. There it can be found that 1 (3) = 1 (5) = 4 and all elements with
minimal index are given by (z2, 3, z4) = £ (0,£1,1),+(1,1,-1),+(-1,-1,1).

Let ¢ = 1(mod 2), ¢ > 3. First suppose that (U, V, Z) is nonnegative integer
solution of the system of equations (5), (6) and (7) with FyFyF3 < 4. Observe
that if one of the integers U, V, Z is equal to zero, then (5), (6) and (7) imply
that other two integers are not equal to zero.

i) If V =0, then (5) and (6) imply
cU? =+F,, ¢Z?=+F,.

Therefrom we have FyFy = ¢2Z?U? < 4. Since ¢ > 3 and U, Z # 0 we
obtain a contradiction.



ii) If Z =0, then (6) and (7) imply
—(c+2) V2 ==4F,, —(c+2)U*=+4F;.

Therefrom we have FhFs = %UQV2 < 4.Sincec>3and U, V #0
we obtain a contradiction.

iii) If U = 0, then (5), (6) and (7) imply
—(c=2V?=4F, cZ?—(c+2)VP=4F,, (c—2)Z*>=+4F;.

Therefrom we have F}F3 = %VQZ2 < 4 and Z is an even integer.
Since V # 0 and Z? > 4 we obtain a contradiction if ¢ # 3. If ¢ = 3, then
Fs = %VQZ2 < 4 which implies (V, Z) = (1,2) . Additionally, we have

_9)2
FiFyFy = [cZ2 — (c+2) V|- =2 gy (10)

Now, for ¢ =3 and (V, Z) = (1, 2) inequality (10) implies a contradiction.
Let (U,V, Z) be a positive integer solution of the system of Pellian equations

cU? —(c—2) V2 =\, (11)
cZ? —(c+2) V2= Ay, (12)

where A; and A are non-zero integers such that || < 4 and |A2| < 4. We find

c c
v U U
+\/c—2 >\/c—2 ’

which implies

-1
V| v, v
c—=2 U| |e—-2 U? c—2 U
3 i e —
| c—2 4 gz fe=3
< 5 < 2§ T ife=5
(c—2)U c Ve(le=2)U o ife>7
Similarly,
2 2
Z+\/C+ V>\/C+ %
c c
implies
-1
c+2 Z| |c+2 Z7* /c+2+g
c Vi | ¢ V2 c Vv
A2 c 4 2z, ifc=3

. < < .
cV? C+2_«/c(c+2)V2_{ %, ife>5



+Vd

The simple continued fraction expansion of a quadratic irrational o = &
is periodic. This expansion can be obtained using the following algorithm.
Multiplying the numerator and the denominator by b, if necessary, we may
assume that b|(d — a?). Let s = a, to = b and

n d d—si
a, = {%J, Spa1 = Aplp — Spy  tpa1 = T“ forn>0 (13)

(see [21, Chapter 7.7]). If (s;,t;) = (sk,tx) for j < k, then
o = [(107 s 7aj—1am]-

Applying this algorithm to quadratic irrationals

\/c+2:\/c(c+2) and ¢ _ clc—2)
c c c—2 c—2
we find that
CJCF 2_ [1,¢,2], where (so,t0) = (0,¢),
(s1,t1) = (¢,2), (s2,t2) = (¢, ¢), (s3,t3) = (¢, 2)
and

Cc

5 = [1,¢—2,2], where (sg,t0) = (0,c—2),
c_
(Slatl) = (67232)a(527t2) = (0723072)3(537&3) = (67272)'

Let p,,/qn denote the nth convergent of .. The following result of Worley [24]
and Dujella [5] extends classical results of Legendere and Fatou concerning Dio-
phantine approximations of the form |a - %| < ﬁ and |a — %| < biz.

Theorem 3 (Worley [24], Dujella [5]) Let « be a real number and a and b
coprime nonzero integers, satisfying the inequality

where M is a positive real number. Then (a,b) = (rpps1 = upn, rgne1 £ uqy) ,
for some n > —1 and nonnegative integers r and u such that ru < 2M.

We would like to apply Theorem 3 in order to determine all values of Ay
with [A;] < 4, for which equation (11) has solution in coprime integers and all
values of Ay with |A2] < 4 for which equation (12) has solutions in coprime
integers. Explicit versions of Theorem 3 for M = 2, was given by Worley [24,
Corollary, p. 206]. Recently, Dujella and Ibrahimpagi¢ [6, Propositions 2.1 and
2.2] extended Worley’s work and gave explicit and sharp versions of Theorem 3
for M = 3,4,...,12. We need following lemma (see [8, Lemma 1]).



Lemma 1 Let af be a positive integer which is not a perfect square, and let
Dn/qn denotes the nth convergent of continued fraction expansion of \/% Let

the sequences (sy) and (t,) be defined by (13) for the quadratic irrational @
Then

a(PGni1 +ugn)® = B(rpns1 +upn)? = (1) (U tng1 + 2ruspgo — rtnga). (14)

Since the period length of the continued fraction expansions of both \/%
ct+2
c
fractions (rpp+1 + upn)/(rgn+1 + ugy) for n = 0 and n = 1. By checking all

possibilities, it is now easy to prove the following results.

and is equal to 2, according to Lemma 1, we have to consider only the

Proposition 1 Let ¢ > 3 be an odd integer and A1 be an non-zero integer such
that |A\1| < 4 and such that the equation (11) has a solution in relatively prime
integers U and V.

i) If ¢ > 7, then Ay € Ay (¢) = {2}.
it) If c=5, then Ay € A1 (5) ={2,2—1¢,32 — 7c} = {2,-3}.
iii) If c =3, then \y € A1 (3) ={2,¢,2 — ¢,8 — 3¢, 18 — 5¢} = {2,3, —1}.

Proposition 2 Let ¢ > 3 be an odd integer and A1 be an non-zero integer such
that |A\1| < 4 and such that the equation (12) has a solution in relatively prime
integers V and Z.

i) If ¢ > 5, then Ay € A3 (c) = {—2}.
it) If c =3, then A\g € As (¢) = {-2,¢,7c — 18} = {-2,3}.
Corollary 1 Let ¢ > 3 be an odd integer.

i) Let (U, V) be positive integer solution of the equation (5) such that ged (U, V) =
d and Fy < 4d?%. Then

+F| € {)\16[2 A € A1 (C)},
where sets Ay (c) are given in Proposition 1.

ii) Let (V, Z) be positive integer solution of the equation (6) such that ged (V, Z) =
g and Fy < 4¢2. Then

+F € {)\292 t Ao € A (C)},
where sets As (¢) are given in Proposition 2.

Proof. Directly from Propositions 1 and 2. =



Proposition 3 Let ¢ > 3 be an odd integer. Let (U,V,Z) be positive integer
solution of the system of Pellian equations (5) and (6) where ged (U, V) = d,
ecd (V, Z) =g and Fy, F5 < 4. Then
i)
(iFl,iFQ) €eB (C) x D (C) s

where B (¢) = By U By (¢), D (¢) = Dy U D1 (¢) and

By = {2}7 Dy = {_2}7
Bl (5) = {_3}7 Bl (3) = {37_17_4}7 Bl (C) = @,C Z 77
D1(3):{3},D1(C):®,6257

it) Additionally, if F1Fy < 4, then (£F1,£F2) € S(c) where S(c¢) = Sp U
Sy (¢) and
SO = {(2a _2)}

S1(3)={(-1,-2),(-1,3)}, S1(c) =0 forc>5.
Proof.

i) From Corollary 1 we have +F} € {A1d2 A € A (c)} and +F5 € {)\292 1A € A (c)}
where sets A1 (¢) and As (¢) are given in Propositions 1 and 2, respectively.

a) For all ¢ > 3 we have +F; = 2d?. Additionally, we have +£F; = —3d?
if c=5and £F, = 3d?, —d? if ¢ = 3. Since F; < 4, we obtain:
i. I =2d%? <4 impliesd =1, i.e. +F; =2;
ii. 1 = 3d?> < 4 implies d = 1. Thus, £F; = —3 for ¢ = 5 and
+Fy) = 3 for ¢ = 3;
iii. F; =d? < 4 implies d = 1,2. Thus, +F, = —1, —4 for ¢ = 3.
Therefrom, we obtain sets B (¢).

b) For all ¢ > 3 we have +F, = —2d?. Additionally, we have +F; = 3d?
if ¢ = 3. Since F5 < 4, we obtain:

i. Ih =2d%> <4 impliesd =1, i.e. £F, = —2;
ii. Fy = 3d? <4 implies d = 1. Thus, £F» = 3 for ¢ = 3.

Therefrom, we get sets D (c).
14) Directly from i) since S (¢) = {(s,t) € B(c) x D (c) : |s| - [t] < 4}.

[

If system (5), (6) and (7) has a solution for some positive integers Fy, Fy, F3,
Fy\FyF5 < 4, then (+£Fy,+Fy) € S(c), where set S (c) is given in Proposition
3 and triple (+Fy,+F5, +F3) satisfies one of the equations in (9). First, for
each pair (£Fy,+F5) € S (c) we check if there exist F5 € N, F1 F5F5 < 4, such
that any of the equations (9) holds. For all pairs of the form (£F;,+F) =



(s,t) condition F1FyF3 < 4 is satisfied if F3 € F (s,t) ={k e N: k|s||t| <4}.
Therefore, for each pair (s,t) € S (c) and for each k € F (s,t), we have to check
if any of these four equations

s(c+2)+t(c—2)=24dke or s(c+2)—t(c—2)==tdke (15)

holds. For example, if ¢ > 3, then (£Fy,£F5) = (2,—2) € S (c). From (15) we
obtain
8 = +4kc or 4c= tdkc.

Since k € F(2,—2) = {1}, the only possibility is £F3 = 1. We proceed
similarly for (—1,—2),(—1,3) € S(3). The only triple we obtain on this way is
(£Fy, £F5,+F3) = (2,—2,1) and the corresponding system is

cU? —(c—2)V? =2 (16)
cZ? —(c+2) V2= -2 (17)
(c—2)Z% — (c+2)U? = 4. (18)

Since this system has solution (U,V,Z) = (+1,+1,+1), we have u(c) = 4 for
all c=1(mod2), ¢ > 3.

Next step is finding all elements with minimal index. Therefore we have to
solve the above system. In [17], Ibrahimpagi¢ showed that if ¢ > 3 is positive
integer, than the only solutions of the system (16) and (17) are (U,V,Z) =
(£1,+1,+1) . Therefrom we have following proposition which finishes the proof
of Theorem 1.

Proposition 4 Let ¢ > 3 be an odd positive integer such that ¢, ¢+ 2, ¢ — 2
are square-free integers. Then all integral elements with minimal index in the

field K. = Q (\/(c— 2) ¢, \/c(c—l— 2)) are given by (x2,x3,24) = £(0,£1,1),
+(1,1,-1), £(-1,1,1).

Proof. Since all solutions of the system (16), (17) and (18) are given by
(U, V,Z) = (£1,4£1,£1) and since we have U = 2x9 + x4, V = 24, Z = x3, we
obtain

2.%‘2 + x4 = il, T4 = il, Tr3 = il,

which implies (22, 73, 24) = £ (0, £1,1),+(1,1,-1), £ (-1,1,1). m

4 Minimal index of the field L.

Let ¢ > 3 be positive integer such that c¢,c — 2, ¢ + 4 are square-free integers
relatively prime in pairs. Then field (2) is totally real bicyclic biquadratic field.

Note that c,c — 2,c + 4 are integers relatively prime in pairs except when
¢ = 0(mod 2) or ¢ = 2(mod 3). Furthermore, by [10], there are infinitely many
positive integers ¢ for which ¢ (¢ — 2) (¢ + 4) is square-free integer. Therefore,

10



there are infinitely many positive integers c for which ¢, c—2, c+4 are square-free
integers relatively prime in pairs, which again implies that there are infinitely
many totally real bicyclic biquadratic fields of the form (2).

In order to prove Theorem 2 we will use a method of I. Gadl, A. Pethé and
M. Pohst [15] again. We have to observe following cases:

i) f c=1(mod4),l=c—2, my =c+4 and ny = ¢, then n; =1 (mod4),
my = 1(mod4), I = 3(mod4) which implies m = m;l = 3 (mod4) and
n =mn1l =3 (mod4);

ii) Let c=3(mod4),l=c—2, my =c+4and ny =c. Then!=1(mod4),
my1 = 3(mod4), n; = 3 (mod4) which implies m = m4l = 3 (mod 4) and
n=nyl =3 (mod4).

Since, in both cases, we have (m,n) = (3,3) (mod4), similarly as in Sec-
tion 3, according to [15], we obtain the system

(c—=2)U* —cVZi=4F (19)
(c=2)Z% —(c+4)V2P=+F, (20)
cZ? — (c+4)U? = +4F3, (21)
where
U=2zs+uz3, V=04, Z=us, (22)

and from Lemma [15, Lemma 1] we obtain that
+(ctd)Fy +cFy=+4(c—2)F; (23)

must hold. In this case the integral basis of L. is

{1, =i V=2 (c+4) ++/(c—2)c 1+«/02(c+4)}

2 b
and its discriminant is D = (4¢ (¢ — 2) (¢ + 4))>.

Now we will calculate the field index m (L.) of L.. We form differences
di=m;—1=6,do=n1—1=2,d3 =my —ny = 4. Since neither 3 nor 4
divides all three differences d;, da, ds, according to [13, Theorem 4], we conclude
m (L.) = 1. Therefore, we have proved statement i) of Theorem 2.

Will apply the same strategy of searching the minimal index and all elements
with minimal index as in previous case. Observe that if (£Fy, +Fy, £4F3) =
(=2,—6,—4), then system (19), (20) and (21) has solutions (U, V, Z) = (£1,+1, +1)
which implies that u (L.) =: u(c) < 12.

Also, if ¢ = 3 and (£Fy, £F5, £4F3) = (1,1, —4), then system (19), (20) and
(21) has solutions (U,V, Z) = (£1,0,+1) which implies that u (3) =1, i.e. field
L3 is monogenic. In [15, p. 109] it can be found that p (3) = 1 and all elements
with minimal index are given by (z2,z3,z4) = +(—1,1,0),4(0,1,0).

11



4.1 Casec>7

Let ¢ = 1(mod 2), ¢ # 2(mod 3), ¢ > 7. First suppose that (U,V, Z) is a non-
negative integer solution of the system of equations (19), (20) and (21) with
FyFyF3 < 12. If one of the integers U, V, Z is equal to zero, then (19), (20) and
(21) imply that other two integers are not equal to zero. Thus we have:

i) If V =0, then (19) and (20) imply
(c—=2)U*=+F, (c—2)7*=+PF,.

Therefrom we have Fy Fy = (¢ — 2)2 Z?U%?<12. Ifc>T7and U, Z # 0 we
obtain a contradiction.

ii) If Z =0, then (20) and (21) imply
—(c+4) V2 ==4F,, —(c+4)U? = +4F;.

Therefrom we have FyFy = CE2172V2 < 12, Since ¢ > 7 and U, V # 0
we obtain a contradiction.

iii) If U = 0, then (19) and (21) imply
—cV? =+F,, ¢Z? = +4F;.

Therefrom we have F} F5 = %VQZ2 < 12 and Z is an even integer. Since
c¢>7,V #0and Z? > 4 we obtain a contradiction.

Let (U,V, Z) be positive integer solution of the system of Pellian equations

(c=2)U?* —cV? =\, (24)
cZ? — (c+4)U? = A3, (25)

where \; and A3 are non-zero integers such that [A;| < 12 and |A3] < 48. We
have

c Ul_| ¢
c—2 V (372 V2 c—2
25 ife="7
A1 c—2 12 v !
< < =, ife=9,13
_ 2 — V27 b
(c-2)V2 Vee—2v2 T, ife>15
and
/c+4_§_ c+4 c+4
c Ul c
|| c

< —- )
cU? c+4 \/ c—|—4U2_U2

12



where M =1ifc>49, M =2if 25 <c <45, M =3if 15 <c <21, M =4 if
c=13, M =5ifc=9and M =6ifc=7.
Applying algorithm (13) to quadratic irrationals

\/0—1—4 \/cc+4 and c e (c—2

c—92

we find that if ¢ > 1 is an odd positive integer, than

c+4
c

c—1 c—1
=1, — 1,2 2,1, ——.2
[7 2 ’7C+7’ 2 ’J’

(SOvtO) ( )7(51>t1) = (Cv4)a
(s2,t2) = (¢ —2,2¢ — 1), (s3,t3) = (¢ + 1,1),
(s4,ta) = (c+1,2¢—1),(s5,t5) = (c — 2,4),

(s6:t6) = (c,¢), (s7,t7) = (¢, 4),

and

c_9 [1 4,] where (so,t0) = (0,c—2),
(Slatl) = (C* 2,2) , (SQ,tQ) = (Cf 2,¢c— 2)’(53’t3) — (C* 2’2)’

for all positive integers ¢ > 3.

Now we will apply Theorem 3 and Lemma 1 in order to determine all values
of A1 with |A;| < 12, for which equation (11) has solution in relatively prime
integers and all values of A2 with |A2| < 48 for which equation (12) has solutions
in relatively prime integers.

Since the period length of the continued fraction expansion of 4

is equal
to 6 if ¢ > 1 is odd, according to Lemma 1, we have to consider only the fractions
(rpn+1 + upn)/(rgne1 +ugy) forn=10,1,....,5.

Since the period length of the continued fraction expansion of

to 2, according to Lemma 1, we have to consider only the fractions (rp,+1 +
upn)/(rqn+1 + ugy) for n =0, 1.
By checking all possibilities, it is now easy to prove the following results.

Proposition 5 Let ¢ > 7 be odd positive integer such that ¢ Z 2(mod 3) and Ay
be an non-zero integer such that |\1| < 12 and such that the equation (24) has
a solution in relatively prime integers U and V.

i) If ¢ > 15, then
A1 € Ay (C) = {—2} .

i) If ¢ =13, then

A€ Ay (13) = {=2,¢— 2} = {—2,11}.

13



it1) If c =9, then

A€ Ay (9) ={-2,—c,c— 2} = {-2,-9,7}.

i) If c=7, then

A €A (T)={-2,—c,c—2,11c— T2} = {-2,-7,5}.

Proposition 6 Let ¢ > 7 be odd positive integer such ¢ Z 2mod3 and A3 be
an non-zero integer such that |A3| < 48 and such that the equation (25) has a
solution in relatively prime integers V and Z.

i) If ¢ > 49, then A3 € Az (c) = {—1,—4}.

it) If c =45, then A\ € Az (c) = {—1,—4,c} = {-1,—4,45}.
iit) If 25 < ¢ <43, then A3 € Az (¢) ={-1,-4,—c—4,c}.
i) If c =21, then

A3 € As(c) = {—1,-4,2c —1,—c—4,c} = {—1,—4,41,-25,21} .

v) If ¢ =19, then
A3 € Az () ={-1,-4,-2¢—9,2c—1,—c—4,c}
= {—1,—-4,-47,37,-23,19}.
vi) If c =15, then
Az € A3z (¢) ={-1,-4,-2¢—9,2c—1,—c—4,3c—4,c}
={-1,-4,-39,29, 19,41, 15} .
vig) If ¢ =13, then

A3 € As (¢) = {—1,-4,4c — 9, —2c — 9,12¢c — 121, 14c — 169, 16¢ — 225,
2c—1,—c—4,3¢c —4,11c — 100, 13c — 144, 15¢ — 196, c}

= {—1,—4,43,-35,35,13, —17, 25} .
viti) If c=9, then
A3 € A3 (¢) = {-1,-4,4¢—9,—2c — 9,4c¢, 6¢ — 25,8c — 49, 10c — 81,

12¢ — 121, 14c — 169, 16¢ — 225,2¢ — 1, —c — 4, 3¢ — 4, 5¢ — 16,
Tc — 36,9¢ — 64, 11c — 100, —3¢ — 16, 13¢ — 144, ¢}

= {—1,-4,27,-27,36,29,23,9, —13,—43, 17} .
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ix) If c=17, then

Az € Az (¢) ={-1,-4,4¢—9,—2¢c — 9,4c,6¢ — 25,8¢c — 49, 10c — 81,
12¢ —121,6c—1,—4c—16,2c—1,—c—4,3c — 4,5¢c — 16, 7c — 36,9c — 64,
11¢ — 100, —3¢ — 16, 5¢ — 16,9¢ — 64, 11¢ — 100, —3¢ — 16, 5¢ — 16, ¢}

={-1,-4,19,-23,28,17,7,—11,—37,41, —44,13} .
Corollary 2 Let ¢ > 7 be odd positive integer such ¢ Z 2(mod 3).

i) Let (U, V') be positive integer solution of the equation (19) such that ged (U, V) =
d and Fy < 12d%. Then

+F € {Md®>: M\ €A (o)},
where sets Ay (¢) are given in Proposition 5.

ii) Let (V, Z) be positive integer solution of the equation (20) such that ged (V, Z) =
g and 4F3 < 48¢2. Then

+4F5 € {)\392 : A3 € Aj (C)},
where sets As () are given in Proposition 6.
Proof. Directly from Propositions 5 and 6. m

Proposition 7 Let ¢ > 7 be odd positive integer such ¢ #Z 2(mod3). Let
(U,V,Z) be positive integer solution of the system of Pellian equations (19)
and (20) where ged (U, V) =d, ged (V,Z) = g and Fy, F3 < 12. Then

i)
(£F,,£4F;) € B(c) x D (c),
where B (¢) = By U By (¢), D (¢) = Do U D (¢) and
Bo = {-2,-8}, Dy={—4,—16,-36},
By (7)={5,-7}, B1(9) ={7,—-9}, B:1(13) = {11}, By (c) =0,c > 15,
Dy (7) = {28, —44}, D (9) = {36}, Dy (c) = 0,c > 13.

ii) Additionally, if F1F3 < 12, then (£Fy,+4F5) € S (c) where S (¢) = Sp U
Sy (¢) and

So = {(_Qa _4) ) (_27 _16) ) (_87 _4)} )
S1 (7) = {(57 _4) s (_77 _4)} , 51 (9) = {(77 _4) ) (_97 _4)} )
S1(13) ={(11,—-4)} and S1(c) =0 for ¢ > 15.

Proof.
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i) From Corollary 2 we have +F; € {A1d2 i M € Ay (c)} and +4F5 €
{39 : A3 € A3 (c)} where sets A; (c) and Aj (c) are given in Propositions
5 and 6, respectively.

a) For all ¢ > 7 we have +F; = —2d?. Additionally, we have £F; =
(c—2)d? if ¢ < 13 and +F; = —cd? if ¢ < 9. Since Fy < 12, we
obtain:

i. F| =2d? <12 implies d = 1,2, i.e. £F; = -2, —8;
ii. Fi = (c—2)d? <12 implies d < /% < 2. Thus, +F; =5 for
c=T,+F, =T7forc=9 and £F; = 11 for ¢ = 13;
iii. Fy = cd? < 12 implies d < 1?2 < 2. Thus, +F, = —T7forc=7
and £F; = —9 for ¢ = 9.
Therefrom, we obtain sets B (c).
b) For all ¢ > 7 we have +4F3 = —g?, —4g. Since F3 < 12, we obtain:
i. 4F; = g% < 48 implies g = 2,4,6, i.e. +4F; = —4, —16, —36;
ii. 4Fy = 4¢% < 48 implies g = 1,2,3. Thus, +£4F3; = —4, —16, —36.
Additionally, we have +4F; = cg? if ¢ < 45, +4F; = (—c—4)g? if
c <43, +4F3 = (2c—1)g? if ¢ < 21, +4F3 = (—2¢—9)g* if ¢ <
19, +4F5 = (3¢ — 4) g° if ¢ < 15, £4F3 = (4c — 9) g%, (12¢ — 121) ¢°,
(11c — 100) g2 if ¢ < 13, +4F3 = 3692, 29¢?, 23¢°, —439? if c = 9 and
+4F3 = 28¢%,17¢g%,41g%, —44¢? if ¢ = 7. Similarly, since F3 < 12, we
obtain:
iii. 4F3 = cg® < 48 implies g =2 if c = 7,9, i.e. £4F3 =28ifc=7
and +4F3 = 36 if c = 9;
iv. 4F3 = (c+4) ¢g?> < 48 implies g = 2 if c = 7, i.e. £4F3 = —44 if

c=T,;
v. 4F3 = [11c — 100/ g? < 48 implies g =2 if c =9, i.e. +4F3 = —4
if c=09;

vi. 4F3 = 36¢% < 48 implies g = 1, i.e. £4F3 =36 if c = 9;
vii. 4F3 = 28¢% < 48 implies g =1, i.e. £4F3 =28ifc=7;
viii. 4F3 = 44¢% < 48 implies g = 1, i.e. +4F3 = —44ifc=7.

All other cases imply a contradiction. Therefrom, we get sets D (c).
i3) Directly from i) since S (¢) = {(s,t) € B(c) x D (c) : |s| - |t] < 48}.

[

If system (19), (20) and (21) has solution for some positive integers F7,
F,, F5, FiFoF3 < 12 then (+Fy,+4F3) € S(c), where set S(c) is given
in Proposition 7 and triple (+Fy, +F5, +4F3) satisfies one of the equations in
(23). First, for each pair (£F;, £4F3) € S (c) we check if there exist F» € N,
FiFyF3 < 12 such that any of the equations (23) holds. For all pairs of
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the form (+Fy,+4F3) = (s,t) condition FyFyF3 < 12 is satisfied if Fy €
F(s,t) = {k€N:kls||t| <48}. Therefore, for each pair (s,t) € S(c) and
for each k € F (s,t), we have to check if any of these four equations

(c+4)s+(c—2)t=+xck or (c+4)s—(c—2)t==%ck (26)

holds. For example, if ¢ > 7, then (£Fy, £4F3) = (—2,—4) € S (c¢). From (26)
we obtain
—6c==xck or 2c—16= =£ck.

Since k € F (—2,—4) = {1,2,3,4,5,6} the only possibility is +F, = —6. We
proceed similarly for every element from set S (c), ¢ > 7. The only triple we
obtain on this way is (£Fy, +F5, £4F3) = (=2, —6, —4) and the corresponding
system is

(c—2)U* —cV?= -2 (27)
(c=2)Z% —(c+4)V?= -6 (28)
cZ? — (c+4)U? = —4. (29)

Since this system has solution (U,V, Z) = (£1,£1,+1), we have u(c) = 12 for
all c=1(mod?2), ¢ # 2(mod3), c>7.

Next step is finding all elements with minimal index. Therefore we have to
solve system (27), (28) and (29). It will be done in Section 4.3.

4.2 Casec=3
Let ¢ = 3. In this case equations (19), (20) and (21) have a form

U?-3Vi=+F (30)
72 —TV? =4F, (31)
372 —TU? = +4F; (32)
and equation (23) has a form
+7F, + 3F, = +4F3. (33)

Since 11 (3) = F1FoF3 = 1, we have to observe 8 systems of the form (30), (31)
and (32) with (£Fy, £Fy, £4F3) = (£1,£1,44). Suppose that (U,V,Z) is a
nonnegative integer solution of one of those 8 system. If £F; = —1, from (30)
we obtain U2 = 2(mod 3) which gives a contradiction. Therefore £F; = 1. If
+4F3 = 4 from (32) we obtain 2U? = 1(mod 3) which gives a contradiction.
Therefore +£4F3 = —4.

Hence, if system (30), (31) and (32) has solution for some positive integers
Fl, FQ, Fg, F1F2F3 = 1, then (:tFl, ZE4F3) = (1, —4) and triple (:tFl, j’:FQ, :|:4F3)
satisfies one of the equations in (33). If (£ Fy, £4F5) = (1, —4), then (33) implies
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+F, = 1. Therefore, only triple we obtain is (+Fy, +F5, +4F3) = (1,1, —4) and
the corresponding system is

U?—-3vi=1 (34)
Z:-1vi=1 (35)
372 —TU% = —4. (36)

In [1] Anglin showed that system (34) and (35) has only the trivial solutions
(U, V,Z) = (£1,0,41) . Now using (22), we find that all integral elements with
minimal index are given by (x2,23,24) = £(—1,1,0),£(0,1,0). This finishes
the proof of Theorem 2 for ¢ = 3.

4.3 Finding all elements with minimal index

Now, we have to solve system (27), (28) and (29) that is obtained in Section
4.1. That system is very suitable for application of method given in [7]. We will
prove the following result

Theorem 4 Let ¢ > 7 be an odd integer. The only solutions to system (27),
(28) and (29) are (U,V,Z) = (£1,+1,+£1).

Therefrom we have following corollary which finishes the proof of Theorem
2.

Corollary 3 Let ¢ > 7 be an odd positive integer such that ¢, ¢ — 2, ¢+ 4 are
square-free integers relatively prime in pairs. Then all integral elements with
minimal index in the field (2) are given by (v2,x3,z4) = £(0,1,1), £(0,1,—-1),
+(1,-1,-1), £(1,-1,1).

Proof. Since all solutions of the system (27), (28) and (29) are given by
(U,V,Z) = (£1,41,£1) and since in this case we have U = 2z + x3, V = a4,
Z = x3 we obtain

x4 = %1, 209 + 23 = £1, 23 = %1,

which implies (z9, z3,24) = +(0,1,1), £(0,1,-1), £(1,-1,-1), £(1,-1,1).
]

In order to prove Theorem 4, first we will find a lower bound for solutions of
this system using the "congruence method" introduced in [9]. The comparison
of this lower bound with an upper bound obtained from a theorem of Bennett
[4] on simultaneous approximations of algebraic numbers finishes the proof for
¢ > 292023. For ¢ < 292022 we use a theorem a Baker and Wiistholz [3] and a
version of the reduction procedure due to Baker and Davenport [2].

Lemma 2 Let (U, V,Z) be positive integer solution of the system of Pellian
equations (27) and (29). Then there exist nonnegative integers m and n such
that

U=up= Un,
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where the sequences (up,), (v,) are given by
wp=1, wur=2c—1, uUpiz=(2¢—2)Unt1 —Up, m >0, (37)
v=1 wvi=c+1l, vpro=(c+2)vpt1 —vn, n>0. (38)

Proof. If (U,V) is solution of equation (27) then there exist m > 0 such that
U = u,, where sequence (uy,) is given by (37) (see [7, Lemma 2]).
Let Z; = ¢Z, then equation (29) is equivalent to equation

Zi —clc+4)U? = —4c. (39)
It is obvious that (a1,b1) = (¢ + 2, 1) is fundamental solutions of equation
A® —c(c+4)B*=4.

By [22, Theorem 2], it follows that if (2q,vg) is the fundamental solution of a
class of equation (39), than inequalities

0<lz0] <+(a1—2)-c=c

b
0<vy< ——\fe=1

V(a1 —2)

must hold. This implies that (zo,v0) = (¢,1) and (2(, v}) = (—¢, 1) are possible
fundamental solution of equation (39). Since

2ov) = z4vo(mod 2¢),

these solutions belong to the same class (see [22, Theorem 4]). Therefore we
have only one fundamental solution (zg,vg) = (¢, 1). Now, all solutions (z,v) of
equation (39) in positive integers are given by (Z1,U) = (2, v,) where

c(c+4)) <c+2+\2/c(c+4)> (40)

Zn +opVc(c+4) = (ch

and n is nonnegative integer (see [22, Theorem 3]). From (40) we obtain that
if (Z,U) is solution of equation (27) then there exist n > 0 such that U = v,
where sequence (vy,) is given by (38). =

Therefore, in order to prove Theorem 4, it suffices to show that v, = w,
implies m =n = 0.

Solving recurrences (37) and (38) we find

2\/7{\f—|—\/7(c—1+m)
(e~ \/cT)(c—l— (c-2)"], (41)
{(\[+F)(c+2+m>l

Um =

Up =

2\/
_(ﬁ_m)(chQf

2c(c+4))"]. (42)
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4.3.1 Congruence relations

Now we will find a lower bound for nontrivial solutions using the congruence
method.

Lemma 3 Let the sequences (u.,) and (vy,) be defined by (37) and (38), respec-
tively. Then for all m,n > 0 we have

U = (=)™ (m(m + 1)c — 1) (mod 4c?), (43)

1
Uy = %c—i— 1 (mod ¢?) . (44)
Proof. We have obtained congruence (43) in [7, Lemma 3]. Congruence (44) is
easy to prove by induction. ]
Suppose that m and n are positive integers such that w,, = v,. Then, of
course, u, = v,(mod ¢?). By Lemma 3, we have (—1)™ = 1 (mod ¢) and

therefore m is even.
2

Assume that n(n + 1) < 2c. Since m < n we also have m(m + 1) < 2c.

Furthermore, Lemma 3 implies

1
1—m(m+1)c= %c—&— 1 (mod ¢?)
and )
—m(m+1) = % (mod ¢). (45)
Consider the positive integer
1
A= nin+1) +m(m+1).

2

We have 0 < A < ¢ and, by (45), A = 0(mod ¢), a contradiction.
Hence n(n+1) > %c and it implies n > 1/0.703¢ — 0.5. Therefore we proved

Proposition 8 If u,, = v, and m # 0, then n > +/0.703¢ — 0.5.

4.3.2 An application of a theorem of Bennett

It is clear that the solutions of the system (27) and (29) induce good rational
approximations to the numbers

-2 / 4
91 = ¢ and 92: et .
Cc c

More precisely, we have

Lemma 4 All positive integer solutions (U, V, Z) of the system of Pellian equa-
tions (27) and (29) satisfy
1% 1 Z 2 .

*|<7'U_2, |92— < —U

|61_U c(e—2) E' c(c+4)
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Proof. We have

/c—2_K
c U

c—2 V2

c—2

2 -2

<ﬁ'§ cfg 17_

and

c—|—4
c

c—|—4g
V ¢ U

|c+

<7
cU? c+4 clc+4)

]

The numbers 6, and 6, are square roots of rationals which are very close to

1. For simultaneous Diophantine approximations to such kind of numbers we
will use the following theorem of Bennett [4, Theorem 3.2].

Theorem 5 If a;, p;, ¢ and N are integers for 0 < i < 2, with ag < a1 < asg,
a; =0 for some 0 < j <2, ¢ nonzero and N > M?, where

= >
M = max {la;[} > 3,

then we have

Orélia<x2 > (130N~v)~ Ly
where
N log(32.04N~)
log (1.68N2 H0§i<j§2(ai - aj)—2>
and

2(12 ag al
(as—ag)?(a1—ag)?
a1+az—2ag

2
7= { e if ag — a1 > a1 — ay,

if as — a1 < ay — ag.

We will apply Theorem 5 with a9 = —2, a1 =0, as =4, N = ¢, M = 4,
g=U,po=V,p1 =U, ps = Z. If ¢ > 262145, then the condition N > M? is
satisfied and we obtain

288 4 g

130-c- ——)"'U ™ < —— 46

( =) 7 (46)
If ¢ > 281220 then 2 — A > 0 and (46) implies
10.082

logU < 0.08 (47)

2-X
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Furthermore,

1 1 log (0.00657¢?)

= < .
2— X _ log(32.04c2F) ™ ]og(0.00000355¢)

log(1.68c% 517)

On the other hand, from (42) we find that

)

2 \Jelet Dyn
Un>0.88(c+ QC(H )) > (0.88¢ + 0.88)"

and Proposition 8 implies that if (m,n) # (0,0), then

U > (0.88¢ + 0.88)V0-703¢=0:5
Therefore,
logU > (v0.703¢ — 0.5) log(0.88¢ + 0.88). (48)
Combining (47) and (48) we obtain

10.082log (0.00657¢?)

V0.703¢ — 0.5 <
¢ 1og(0.88¢ + 0.88) log(0.00000355¢)

and (49) yields a contradiction if ¢ > 292023. Therefore we proved

Proposition 9 If ¢ is an integer such that ¢ > 292023, then the only solution
of the equation u,, = v, is (m,n) = (0,0).

4.3.3 The Baker-Davenport method

In this section we will apply so called Baker-Davenport reduction method in
order to prove Theorem 4 for 7 < ¢ < 292022.

Lemma 5 If u,, = v, and m # 0, then
0<m10g(c—1+m> _nlog(c+2+\2/m)

m(ﬁ+m)<023912 c+2+/c(c+4) o
Ve=2\/c+e+4) 2 '

Proof. In standard way (for e.g. see [7, Lemma 5]). L]
Now we will apply the following theorem of Baker and Wiistholz [3]:

+ log

Theorem 6 For a linear form A # 0 in logarithms of | algebraic numbers
i, ..., with rational integer coefficients by, ...,b; we have

log A > —18(1 + D)1 (32d) 21/ (1) - - - B/ () log(21d) log B,
where B = max{|b1],...,|b|}, and where d is the degree of the number field

generated by aq, ..., q;.

22



Here

1
B (a) = - max {h(a),|log a, 1},

and h(a) denotes the standard logarithmic Weil height of a.
We will apply Theorem 6 to the form from Lemma 5. We have [ = 3, d = 4,
B=n,

a1 =c—1++c(c—2), a2=C+2+2‘C(C+4),
_ AL+ VETD)

B2t Vet d)

Under the assumption that 7 < ¢ < 292022 we find that
) 1 1 ) 1
h(ay) = 3 log o < §log 2¢, h(ag) = 3 log s < 6.2924.

Furthermore, a3 < 1.2145, and the conjugates of a3 satisfy

= e Ve
W

ol] = Y< AVeEVe=2) og0095.51

Ve 2(er 1- o)

‘ ///l_ Ve (\/> VE— )<1
T

| !/

Qs <1,

Therefore,
1
W(ag) < 7 log [16 (c—2)%-1.2145 - 292025.51} < 10.181.

Finally,

< —2nlog(2c).

c+2+\/c(c+4)>_2n}
2

log [0.239 12 <

Hence, Theorem 6 implies
1
2nlog(2c) < 3.822 - 105 . 5 -log(2c¢) - 6.2924. - 10.181log n

and
—— < 6.12122-10%. (50)
1 ogn
which implies n < 2.59542 x 1018,
We may reduce this large upper bound using a variant of the Baker-Davenport
reduction procedure [2]. The following lemma is a slight modification of [9,
Lemma 5 a)]:
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Lemma 6 Assume that M is a positive integer. Let p/q be a convergent of the
continued fraction expansion of k such that ¢ > 10M and let e = ||uq||—M-||xq||,
where || - || denotes the distance from the nearest integer. If € > 0, then there is
no solution of the inequality

O<m-—nk+pu<AB™"

i integers m and n with

log(Ag/e) . r.
logB — —
We apply Lemma 6 with
log cva log a3 0.23912
KR = P—— = —, A — ,
log oy log oy log oy

24/ 2
B:(C+ + QC(H >> and M = 2.59542 x 10'8,

If the first convergent such that ¢ > 10M does not satisfy the condition € > 0,
then we use the next convergent.

We performed the reduction from Lemma 6 for 7 < ¢ < 292022. The use
of the second convergent was necessary in 3686 cases (= 3.63%), the third
convergent was used in 209 cases (=~ 0.07%), the forth in 37 cases, the fifth
convergent is used in only one case: ¢ = 169901. In all cases we obtained n < 7.
More precisely, we obtained n < 7 for ¢ > 7; n < 6 for ¢ > 9; n < 5 for ¢ > 14;
n < 4 for ¢ > 57; n < 3 for ¢ > 144; n < 2 for ¢ > 1442. The next step of the
reduction in all cases gives n < 1, which completes the proof.

Therefore, we proved

Proposition 10 If ¢ is an integer such that 7 < ¢ < 292022, then the only
solution of the equation vy, = wy, is (m,n) = (0,0).

PROOF OF THEOREM 4. The statement follows directly from Propositions
9 and 10.
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